

Code of Practice for Building Information Modelling (BIM) e-Submission

CIVIL & STRUCTURAL (C&S) REQUIREMENTS

Code of Practice for BIM e-Submission: C&S Requirements

BCA acknowledges the leadership provided by the BIM Steering Committee in support of the production of the Code of Practice for Building Information Modelling (BIM) e-Submission.

This Code of Practice (CP) has been prepared by the Centre for Construction IT on behalf of BCA and the BIM Steering Committee.

©Building and Construction Authority 2017

Building and Construction Authority 52 Jurong Gateway Road, #11-01 Singapore 608550 www.bca.gov.sg

First published October 2016

While every effort has been made to ensure the accuracy and quality of information contained in this publication, the Building and Construction Authority, its employees, agents or industry partners can take no responsibility for the subsequent use of this information, nor for any errors or omissions that it may contain.

Cover image and design courtesy of RSP Architects Planners & Engineers (Pte) Ltd and BCA Academy

ACKNOWLEDGEMENTS

The development of this Code of Practice has been a collaborative effort among a cadre of very knowledgeable consultants and processing officers from different regulatory/ technical agencies. Significant contributors are listed below:

Regulatory/Technical Agencies

Name	Agency
Ms. Chang Bek Mei	Building and Construction Authority
Mr. Brian Phua	
Er. Chua Bee Tee	
Mr. Victor Lian	
Er. Lee Chee Keong	
Mr. Bernard Tan	
Mr. Kiefer Chiam	
Mr. Wu Defu	
Mr. Sonny Andalis	

BIM C&S Workgroup

The BIM C&S Workgroup (2015 - 2016) comprises the following:

Name	Organization
Mr. Jugal Makwana	AECOM Singapore Pte. Ltd.
Mr. Gordon Yu	
Mr. Colin Yip	Arup Singapore Private Limited
Mr. Nizar Rahim	
Ms. Wendy Wang	CPG Consultants
Mr. Lim Jit Siang	
Mr. Tan Yew Chai	DP Engineers Pte. Ltd.

Code of Practice for BIM e-Submission: C&S Requirements

Mr. Alvin Chou	
Ms. Serene Lim	KTP International Pte. Ltd.
Mr. Ricky Masangkay	
Mr. Chua Teck Leng	LSW Consulting Engineers
Mr. Wong Tech Hong	Meinhardt Singapore
Mr. Po Seng Kian	
Mr. Liew Ve Koon	P & T Consultants Pte Ltd
Ms. Ivy Tay	
Mr. Lee Siew Beng	Parsons Brinckerhoff Pte. Ltd.
Mr. Pang Sook Mian	
Mr. Daniels Chandra	Rankine&Hill (Singapore) Pte Ltd.
Mr. Santiago Galang	
Ms. Winnie Kan	RSP Architects Planners & Engineers Pte Ltd
Mr. Rexter Retana	
Mr. Wan Fook Sing	Sembcorp
Mr. Yan Naing Bo	Surbana Jurong Consultants Pte. Ltd.
Mr. Ng Swee Tong	T.Y. Lin International Pte. Ltd.
Mr. Leong Kok Sang	
Mr. Abdul Rahim Mat Ali	Web Structures
Ms. Jessica Sow	Worley Parsons

TABLE OF CONTENTS

1	BCA REC	COREMENTS	∠
	1.1 BIM	Deliverables	4
	1.1.1	Site and Location Plans	7
	1.1.2	2 Amendment Submissions	8
	1.1.3	As-Built/Record Plans Submissions	8
	1.1.4	Model Progression	8
	1.2 ST R	equirements	12
	1.2.1	BCA Substructure Submission Requirement (BCA SUB/GEO Submissions)_	_12
	1.2.2	BCA Superstructure Submission Requirements (BCA SUP Submissions)	_16
		ctural Requirements for Household Shelter (HS), Storey Shelter (SS) and case Storey Shelter (SSS)	22
	1.3.1	General Requirements	_22
		ctural Requirements for Transit Shelter (TS)	
	1.4.1	General Requirements	_28
	1.5 Struc	ctural Requirements for Public Shelter (PS)	33
	1.5.1	General Requirements	_33
co	RE INFOR	MATION (CI)	37
со	LOUR CO	DES	46
		OF TERMS	
ΑN	NEX I.	REQUIREMENTS FOR CIVIL DEFENCE SHELTERS	48
ΑN	NEX II.	FIGURES FOR HS, SS AND SSS	49
LIS	T OF TABL	ES	88
LIS	T OF FIGU	RES	88
СО	DE OF PR	ACTICE FOR BIM E-SUBMISSION SERIES	89

AGENCY- SPECIFIC REQUIREMENTS

1 BCA REQUIREMENTS

All BCA BIM Submisions shall meet the following requirements specified under:

- Singapore BIM Guides Modelling Requirements
- BIM e-Submission Template Guides

Complete and updated set of BIM guides can be found at www.corenet.gov.sq

All submissions shall be placed in sheets which shall contain the title block with information as boxed up in Fig. 1a.

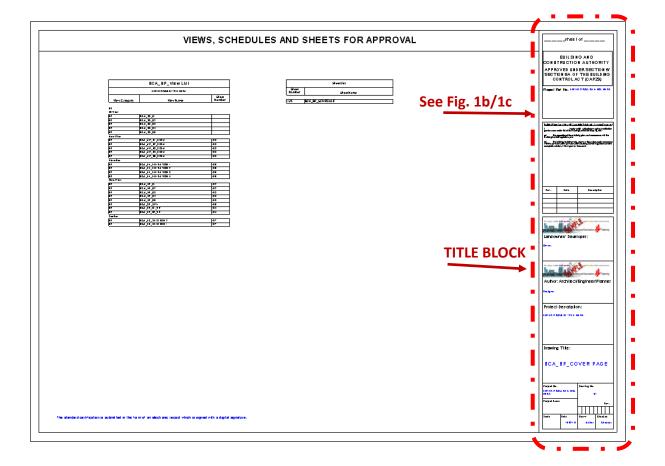


Fig. 1a - Sheet with Title Block

Fig. 1b- BCA Standard Approval Stamp

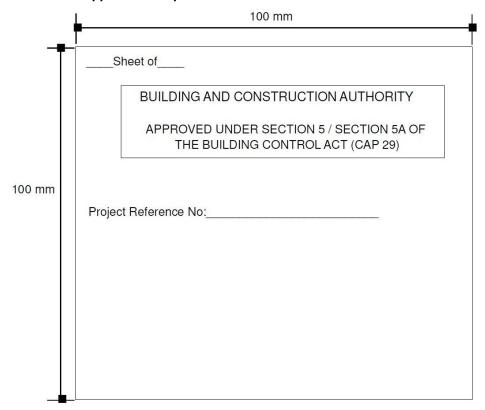
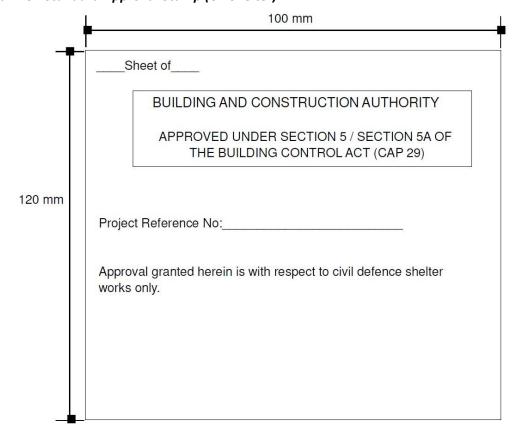



Fig. 1c - BCA Standard Approval Stamp (CD Shelter)

1.1 BIM Deliverables

The BIM model to be submitted for BCA ST and CS submissions shall meet the requirements specified under the following documents:

- Building Control Act and Regulations
- BCA Advisory Notes and Circulars
- Technical Requirements for Household Shelters and Storey Shelters, Public Shelters and Transit Shelters

The BIM file shall contain the following:

- 3D Views (Model)
- 2D Views
- Schedules
- Sheets for Approval

QP shall refer to each specific list of BIM deliverables in 2D, part model and schedules in Chapter II and III for Structural (ST) Requirements for building works and Chapter IV and V for structural (CS) Requirements for Household Shelter, Storey Shelter, Staircase Storey Shelter, Public Shelter and Transit Shelters.

A. Structural Physical Model (PM)

- a) Structural Physical Model shall consist of all structural elements that are required to be submitted to BCA for approval, shall include but not limited to the following:
 - Foundation elements e.g. Piles, footings, raft foundation;
 - ii. Structural elements such as beams, slabs, columns, walls, permanently left in retaining structures, walls with knock out panels, claddings and curtain walls, underground structures connected to building and MRT station (if any).
- b) All plan views, sections and schedules shall be generated from the 3D model.
- c) All elements shall be modelled span to span, level by level.
- d) All plan views, sections, schedules shall indicate the minimum required information such as gridlines, dimensions between grids and levels, markings and sizes of elements.
- e) All elements shall have only one (1) reference level per floor i.e. Structural Floor Level (SFL).

- f) All elements shall be geo-referenced to global coordinates (as per SVY21) for x-y coordinates and in Singapore Height Datum (SHD) for z coordinate. This can be achieved by setting individual global coordinates per element or utilizing BIM software survey and project points to convert local to global coordinates.
- g) All elements shall contain required attributes such as element type, element marking, material type and grade (steel, concrete and reinforcements bars), element sizes (BxH), and span (L).
- h) All elements shall be able to be filtered according to their element types and displayed separately.
- i) All structural details including connection details necessary for construction shall be indicated.
- j) All details in the 3D model that are not submitted for approval shall be shown in half tone and indicated as "For Reference".

B. Floor Plans

The floor plans for the structural elements (e.g. beams, columns, walls, slabs) shall include but not limited to the following:

- a) Grids, grid spacing and offset to centreline of elements;
- b) Structural element markings, span, sizes and or thickness;
- c) Location, extent, profile and dimension of slab drops;
- d) Slab (one way or two way span) configurations including number of studs for composite floors; and
- e) Slab details showing both top and bottom rebar at the support and span of the slab.

C. Penetrations, Openings and Drops

- a) Openings/penetrations formed in the structural elements for running of building services shall be clearly identified and indicated on floor plan and/or sections.
- b) Openings for circulation elements like staircase, lift pits and vehicular ramps shall be modelled.
- c) Indicative sizes of major openings more than 300x300 for beams and columns and 1000x1000 for walls and slabs for all types of openings shall be modelled. For guidance, any openings in excess of 20% of element face shall be modelled.
- d) Floor plans and sections shall include the indication of the location and extent and dimensions of structural drops.

D. Cross and Longitudinal Section Views

Cross and Longitudinal Section Views can be generated in either hybrid or full 3D and shall include the following:

- a) Grid, grid spacing and offset to centerline of elements;
- b) Elevation markers in structural floor level (SFL);
- c) Profile of structural elements indicating location, extent and dimensions of structural drops such as drops in beams and slabs;
- d) Reinforcement details of elements if not represented in schedules; and
- e) Connection details between structural elements.

E. Details of Structural Elements

- a) All elements shall contain minimum required attributes such as element type, element marking, material type and grade (steel, concrete and reinforcement bars), size of bolts and thickness of welds for steel, sizes (BxH), span (L) etc.
- b) Details of structural elements such as reinforcement of beams, columns, slabs can be represented in schedules that are auto-generated from the 3D model.

F. Non Typical Details

Non-typical details can be done in either hybrid details or full 3D objects. Examples of non-typical or critical details are indicated in the following but not limited to:

- a) Beam to column connections;
- b) Interface between pile and pile caps;
- c) Interface and spacing of ground anchors and permanently left-in ERSS structures; and
- d) Details of joints for structural steel members.

G. General Notes

The information for the design and construction notes of the projects can be indicated in the cover page or the general notes page and includes but not limited to the following:

- a) Material specifications;
- b) Instrumentation and monitoring requirements;
- c) Design parameters used;
- d) Method statements; and
- e) Typical sizes and detail of openings/penetrations for building services.

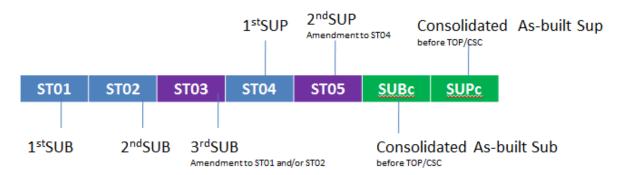
1.1.1 Site and Location Plans

Fig. 2 - Site layout showing reduced annotations at L1

Site and location plans shall include the following details:

- a) Geo-referenced location: Project base point and survey points in SVY21 coordinates including dimensions between grids;
- b) Block or zone numbers;
- c) Mukim numbers;
- d) Lot boundary lines, road reserve lines, setback lines;
- e) Building layout showing the geometry of the building at the 1F or ground floor;
- f) Underground structures connected to building and MRT stations, if any; and
- g) Acceptable formats include but not limited to: .dwg/.dxf/.shp.

1.1.2 Amendment Submissions


- a) Any "material changes" or "structural changes" from approved BIM file shall be submitted as an amendment to the originally approved ST submissions.
- b) Amendment submissions shall be added with additional naming fields to distinguish from original submissions. Revision clouds indicating the amendment shall be included. In addition, color scheme as per CP83 standard is allowed.

1.1.3 As-Built/Record Plans Submissions

- a) QPs shall submit consolidated as-built substructure and superstructure BIM files of their own scope in both native BIM and IFC format to BCA before TOP application of the project. The as-built BIM file is similar to all approved BIM files consolidated and updated with all immaterial changes.
- b) QP for other structural works such as cladding and curtain walls shall submit consolidated as-built BIM files of their own scope of works to BCA.
- c) The main QP is advised to consolidate all the BIM models of other QPs to form a federated model.

1.1.4 Model Progression

Fig. 3- ST plan submission in stages indicating a consolidated substructure and superstructure BIM files before TOP/CSC

Record plans (RP) generated from record models shall be submitted to BCA by each QP showing their own scope of works. Record plans can be submitted progressively as shown above.

Fig. 4 - Model progression for ST1 and ST2.

Legend: FA=for approval; AP=approved; WIP=work in progress

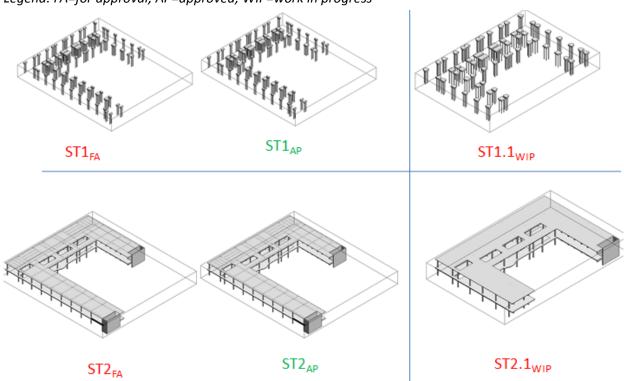


Fig. 5 - Model progression for amendment submissions for approved ST

Legend: FA=for approval; AP=approved; WIP=work in progress; AM=amendment

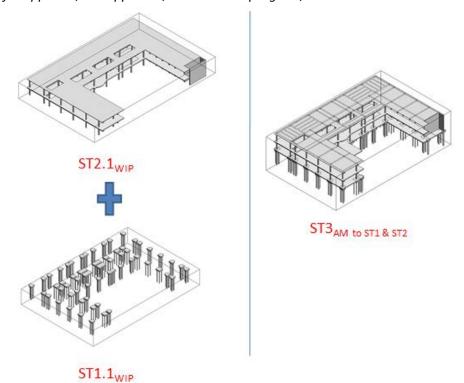


Fig. 6 - Model progression for single and federated options

Legend: FA=for approval; WIP=work in progress

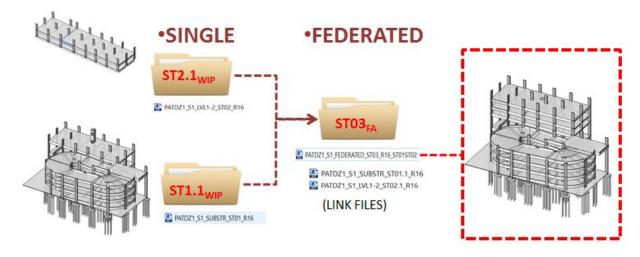
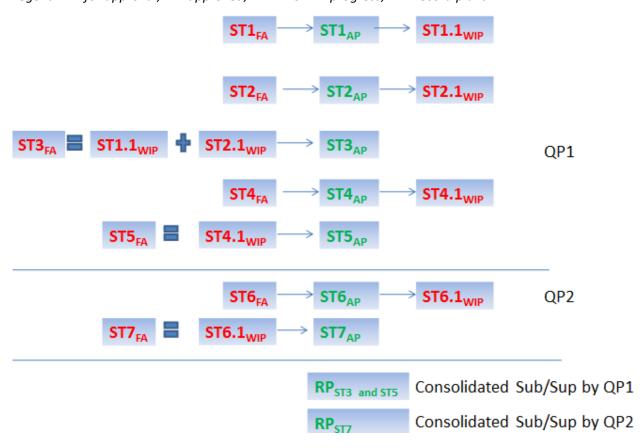



Fig. 7 - Model progression QP1 and QP2 including consolidated record models

Legend: FA=for approval; AP=approved; WIP=work in progress; RP= record plans

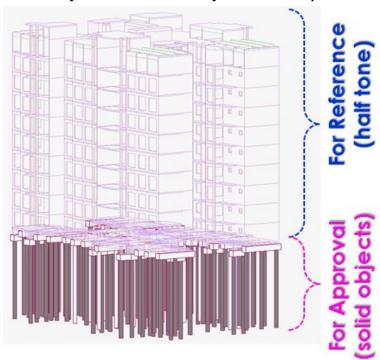


Fig. 8 - For Approval and For Reference as solid and half tone elements per ST

1.2 ST Requirements

1.2.1 BCA Substructure Submission Requirement (BCA SUB/GEO Submissions)

BCA Substructure and Geotechnical Submission Requirements

(Required Views, but not limited to)

2D Views	3D Views	Schedules						
 Site and Location Plan General Notes Typical Details Non Typical Details Floor Plans Elevation Views Cross & Longitudinal Section Views 	 Structural Physical Model (PM) showing all structural elements Geotechnical Parameters Dummy Object Penetrations/Openings Record Plans (RPP/RPF) 	Schedules for all structural elements not limited to: • Pile Schedule • Pile Cap Schedule* • Retaining Wall Schedule • Basement Slab Schedule* • Beam Schedule • Column/Wall Schedule						
All 2D Views and Schedules shall be placed on sheets								

A. Geotechnical Parameters (Dummy Borehole object)

QP shall place a *dummy borehole object* to represent geotechnical parameters derived from the soil investigation (SI) report.

Table 1 - Borehole information

PROJ_ID	PROJ_NAME	PROJ_	HOLE_	HOLE_	HOLE_	HOLE_	HOLE_	HOLE_	ROCK_	ROCK_	FORMATION
		CLNT	ID	STAR	NATE	NATN	GL	FDEP	HEAD	TYPE	
A0677-	Soil Investigation	Mr. XXX	BH1	15/7/2015	13169.723	36010.451	6.514	45	33.5	Granite	Bukit Timah
00001-	Works at No.XX XXX										Granite
2015	Road, SG XXXXXX										

Fig. 9- Dummy Borehole Object

The dummy objects for boreholes would be vertical sticks associated with basic soil information which could be stored in the schedule, and to show the borehole locations within this construction site.

Borehole object shall follow the BIM e-Submission Template Guides.

Note: Borehole object shall be provided for projects with fewer boreholes (< 20 boreholes)

B. Substructure Schedules

Pile schedule shall be generated from objects/elements attributes.

The schedules shall include but not limited to:

- a) Pile type, pile marking and pile size;
- b) Working load and grade of concrete;
- c) Main rebar and links;
- d) Penetration length from existing ground and cut off levels indicated as Singapore Height Datum (SHD) levels; and
- e) Demolished, existing or new foundation elements.

Table 2 - Sample Pile Schedule

Pile	Pile	Depth	Reinforcement				
Туре	Diameter		B1	B2	S1	T1	T2

Table 3 - Sample Beam Schedule

Referenc	Beam	Be	am	Approx		First Span/ Single Span					Link			Se	cond Spa	n/ Inter	mediate	Span			Link			
e	Mark	Si	ize	Span (L)		Top Bars		В	ottom Ba	rs		Links		Type A		Top Bars		Вс	ttom Ba	rs		Links		Туре В
Level				mm																				i l
		b	h		T1a	T2a	T3a	B1a	B2a	B3a	S1a	S2a	S3a		T1b	T2b	T3b	B1b	B2b	B3b	S1b	S2b	S3b	

	End Span									
	Top Bars		Bottom Bars					Type C		
T1c	T2c	T3c	B1c	B2c	B3c	S1c	S2c	S3c		

Table 4 - Sample Column Schedule

Level/	Concrete	Colum	Column Size		Column Size		Column	Vertical	Horizontal	Hook
Storey	Grade	Mark	b	h	Type	Reinforcement	Reinforcement	(Vertical)		

C. Colour Assignments

Coloured/Hatch/Fill Patterns can be used to show the following:

- a) Bore Hole zones; and
- b) Existing, New, Demolished Elements as per colours specified under the CP for BIM e-Submission: General Requirements.

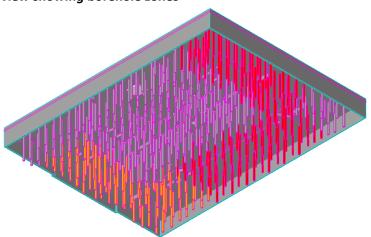


Fig. 10 - Isometric view showing borehole zones

D. As-Built Pile Information

The as built pile information shall be submitted in a standardized excel spreadsheet as per the Pile Excel Table: **BCA-BE-QPCTPW_ANNEX A**

1.2.2 BCA Superstructure Submission Requirements (BCA SUP Submissions)

BCA Superstructure Submission Requirements

(Required Views, but not limited to)

2D Views	3D Views	Schedules
General Notes	Structural Physical	Schedules for all structural
 Typical Details 	Model (PM) showing all	elements not limited to:
• Typical	structural elements	Beam Schedule
Connections	 Penetrations/Openings 	Column Schedule
Non Typical	 Record Plans (RPP/RPF) 	Wall Schedule
Connections		Slab Schedule *
 Floor Plans 		
• Cross &		
Longitudinal		
Section Views		
 Elevation Views 		
 Color/Hatch/Fill 		
Patterns		
		* Option to submit as 2D Detail

All 2D Views and Schedules shall be placed on sheets

Copyright © 2017 Building and Construction Authority. All Rights Reserved.

A. Typical Details

- a) Non-structural drops in slabs or beams;
- b) Lintel beams for wall openings;
- c) Beam elevation profiles showing cantilever, mid-span and continuous members; reinforcement detailing;
- d) Column profiles showing extent from foundation to roof including reductions; and
- e) Roof rafters/purlins/tie rods connection details.

B. Other Details of Superstructure Works

- a) Precast structural elements;
- b) Post tension elements including tendon profile;
- c) Steel or timber space frames joined by proprietary ball connections; and
- d) Cross laminated timber (CLT) and glulam.

Fig. 11 - Tendons for post tension element

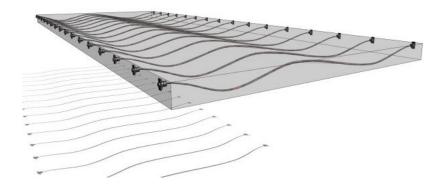


Fig. 12 - Exploded view of CLT structure showing Primary Load Bearing PLB objects

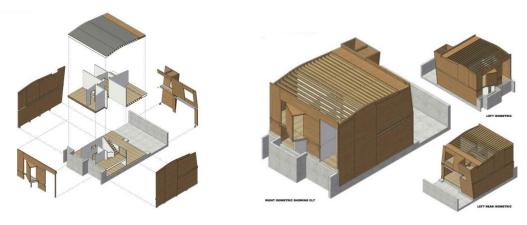
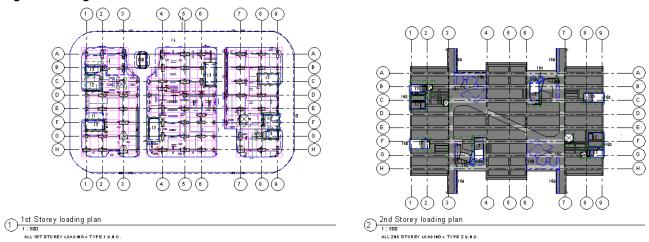
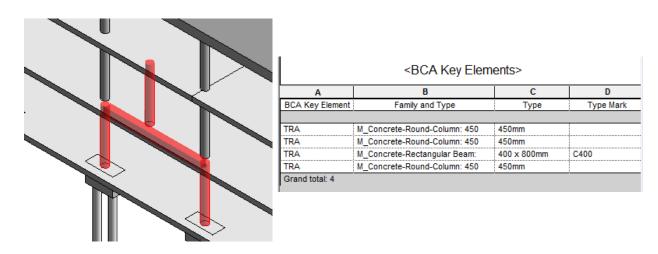



Fig. 14 - BIM generated Floor Plans



C. Non Typical Details

Critical connections for key structural elements can be done using hybrid detailing and/or full 3D element detailing:

- a) Interface between steel/timber truss terminations to supporting columns;
- b) Inclined, splayed and lattice columns;
- c) One-off steel bolted and/or welded connections;
- d) Cantilever elements with 6m span or greater;
- e) Transfer columns to beam/floor connection details; and
- f) Corbel and haunch for precast elements.

Fig. 15 - Critical Elements highlighted in 3D and schedules

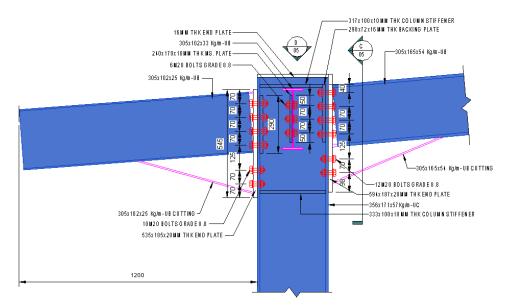
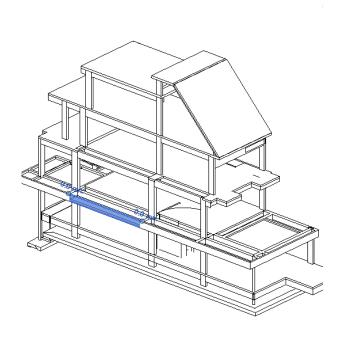
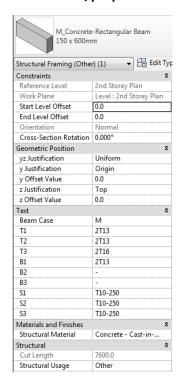
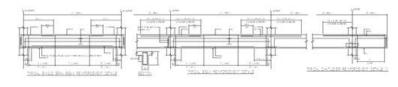




Fig. 16 - Critical Joints showing bolted connection of steel beams to column

Fig. 17 - Highlighted structural beam with embedded rebar as attributes/properties



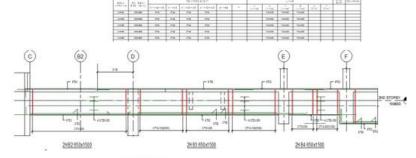

D. Structural Detailing Options

Fig. 19 - QP three (3) options for structural detailing in native BIM

Option 1: Schedule

Option 2: (3D objects + 2D annotations created in BIM)

Option 3: 3D Connections

E. Superstructure Element Schedule

- a) Regular, up stand or down hang beam/girder rebar showing top, bottom, extra, torsion and links;
- b) Column rebar showing main, links, development/anchorage;
- c) Slab rebar showing main top and bottom including additional rebar for crack control;
- d) Wall rebar showing main rebar and links; and
- e) Prefabricated and pre-qualified rebar cages;

see Table 3 - Sample Beam Schedule

see Table 4- Sample Column Schedule

1.3 Structural Requirements for Household Shelter (HS), Storey Shelter (SS) and Staircase Storey Shelter (SSS)

1.3.1 General Requirements

The design and detail of household shelter shall comply with Technical Requirements of Household Shelter. For storey shelter and staircase storey shelter, the design and detail shall comply with Technical Requirements for Storey Shelters.

The structural plan shall contain a site plan, the floor plans, sections and elevations of household shelter (HS), storey shelter (SS) and staircase storey shelters (SSS) showing design information and dimensions generated from the native BIM model. HS, SS and SSS plan shall be indicated with the same project reference number. The abbreviation, CS should be used for shelter structural plans respectively. For example, A9999-12345-2001-CS01 should be used for shelter building and structural plans respectively.

For subsequent amendment submissions made to the approved shelter plans or re-submission of shelter plans after receipt of Notice of Disapproval (NOD) issued by BCA, the plans shall be indicated with respective plan type suffix and unique numbers in their application. For example, if shelter building plans CS01 has been used and subsequent amendment submissions shall be indicated with CS02.

Civil Defence Shelters (HS/SS/SSS) Submission Requirements

(Required Views, but not limited to)

2D Views	3D Views	Schedules								
 Site Plan General Notes Typical Details Typical Connections Floor Plans Cross and Longitudinal Section Views Elevation Views 	 Structural Physical Model (PM) showing the following: Household Shelters (HS) Storey Shelters (SS) Staircase Storey	Schedules for all structural elements not limited to: • Wall Schedule • Slab Schedule* • Reinforcement Schedule • Blast Door Schedule • Blast Hatch Schedule • Rescue Hatch Schedule • Ventilation Sleeve Schedule * Option to produce as 2D detail								
All 2D	All 2D Views and Schedules shall be placed on sheets									

A. Site Plan

The site plan shall include the location map, general notes and standard typical details

B. General Notes

The general note shall include essential information such as material type and grade, the standard typical detail such as steel reinforcement, curtailment marking, anchorage and tension lapped lengths.

C. Structural Physical Model (PM)

- a) Structural Physical Model of the building with HS, SS, and SSS shall include all surrounding concrete & steel members (trellis, canopy, ledge, down hang beams, tie beams, shielding walls etc.) which are provided and used for protection of HS, SS, and SSS.
- b) HS, SS, and SSS have to be modelled as part of the buildings.
- c) All ventilation sleeves, shelter door and blast door openings shall be modelled for all HS, SS, and SSS structures.
- d) Where water and gas services are located near or adjacent to HS, SS and SSS, they shall be included as part of the 3D model.
- e) Transfer structures (beams, slabs and walls), if any, supporting household storey shelter shall be modelled. Take note the use of transfer beam is allowed for household storey shelter only.
- f) HS, SS and SSS wall and slab dimensions and reinforcement. This applies to design of cast in-situ or precast HS, SS, and SSS.
- g) Ceiling slab immediately outside the HS, SS and SSS
- h) Household shelter HS, SS, and SSS slab which are integrated with pile cap or footing.
- i) Detailing of HS, SS, and SSS tower
- j) Any structures above and/or surround HS, SS, and SSS shall be included as part of the model.

D. Floor Plans for HS, SS and SSS

The floor plan generated from the model shall show the design information and dimensions for HS, SS and SSS as follows:

- a) Yield stress of welded steel fabric mesh and steel reinforcement bars
- b) The location and marking of HS, SS and SSS
- The location, dimension and details of gas and water riser adjacent or near to HS,
 SS and SSS
- d) The external and internal dimension of HS, SS and SSS
- e) The thicknesses of HS, SS and SSS wall and slab (ground, intermediate and roof slab)

In addition, additional design information and dimensions required for SS and SSS are:

- a) The distance between external face of SS or SSS entrance door and the edge of building line
- b) The thickness, dimension and steel reinforcement details of shielding wall fronting SS or SSS entrance door
- c) The clear distance between shielding wall and SS or SSS entrance door
- d) The thickness, dimensions and steel reinforcement details of the internal wall of SSS
- e) The thickness, dimension and steel reinforcement details of mechanical ventilation shaft for SSS
- f) The dimensions and steel reinforcement detail around the horizontal and vertical blast hatch (for SSS) and rescue hatch (for SS)
- g) The dimension and steel reinforcement detail of reinforced concrete roof structures over the mechanical ventilation shaft above main roof level.
- h) The dimensions/thickness of and reinforcement details in strengthened slab outside and above SS/SSS door.

E. Cross Sections for HS, SS, and SSS

The sections in two directions generated from model shall include:

- The vertical section of the entire HS, SS and SSS tower showing storey height, dimensions and reinforcement details.
- b) The horizontal section (or plan) of HS, SS and SSS wall showing steel reinforcement, curtailment marking, anchorage and lap length. The thickness, internal and external width and length of HS, SS and SSS shall also be indicated (see Annex II, Figure 1a, 1b, 2a and 3a).
- c) The vertical section of HS, SS and SSS wall and slab showing steel reinforcement bar size, spacing, anchorage and lap length. The slab thickness shall also be shown (see Annex II, Figure 1c, 1d, 2b, 2c and 2d).
- d) The horizontal section (or plan) of HS, SS and SSS precast concrete door frame showing steel reinforcement, anchorage and tension lapped lengths (see Annex II, Figure 3a, 3b, 4a, 4b, 5a and 5c).
- e) Shear link details on horizontal and vertical section of HS, SS, SSS wall and slab (see Annex II, Figure 6).
- f) The cross sectional details of openings such as the blast door opening, ventilation openings and services penetrations including their location, size and steel reinforcement details around them (see Annex II, Figure 7); and
- g) The cross sectional details of electrical services such switches and lighting point, switched socket outlet, telephone outlet. TV and radio outlets including their location, size and steel reinforcement details around them (see Annex II, Figure 8).

In addition sections for SSS shall include the following:

- a) The cross sectional details of openings of horizontal and vertical blast hatch including its location, size and steel reinforcement details around them;
- b) The reinforced concrete roof structures over the mechanical ventilation shaft above main roof level showing steel reinforcement bar size, spacing, anchorage and tension lapped lengths.

F. Elevations

- a) The steel reinforcement bars around the ventilation sleeve opening (see Annex II, Figure 9)
- b) The steel reinforcement bars around switches and lighting point, switched socket outlet, telephone outlet. TV and radio outlets (see Annex II, Figure 8)

H. Schedules

a) Schedule of reinforcement bars for the HS, SS and SSS shall be provided with types of rebar, rebar size, rebar spacing, curtailment marking to meet the technical requirement. Table below shows schedule of reinforcement.

Table 5 - Steel reinforcement bar size and spacing for each curtailment marking

Curtailments of welded steel fabric mesh and steel bars						
Curtailment marking	а	b	е	f	g	h
Steel Mesh	D10	D10	D10	D10	D10	D10
Curtailments and steel bars						
Curtailment marking	С	d	m	i		
Steel bar	H10-	H10-	H10-	H10-		
	100	100	100	100		

Table 6- Curtailment Marking Schedule

SS/ CD Type	Curtailment	SS/ CD	Steel Mesh/	Spacing
	Marking	Wall Side	Steel Mark	

b) Schedules of wall, column, beam and slab for the HS, SS and SSS shall be provided with the dimension of length, width and height to meet the technical requirement.

Table 7- Wall Schedule

SS/ CD Type	SS/ CD Wall Side	Thickness		

c) Schedules of blast door, blast hatch, rescue hatch, ventilation sleeve for the HS, SS and SSS shall be provided with the dimension of length, width and height to meet the technical requirement.

1.4 Structural Requirements for Transit Shelter (TS)

1.4.1 General Requirements

The Qualified Person (QP) shall familiarize himself with the CD Shelter Requirements for MRT Stations before preparing the Structural BIM submission for MRT Transit CD shelters. The submission shall comprise native BIM 3D models, 2D plans, sections and elevations that are illustrative with details and dimensions, to demonstrate compliance with the CD shelter requirements. The submission shall comprehensively cover important aspects of the shelter.

Civil Defence Transit Shelters (TS) Submission Requirements

(Required Views, but not limited to)

2D Views	3D Views	Schedules				
General Notes	Full Physical Model (PM)	Schedules for all structural				
 Shelter Layout 	showing the following:	elements not limited to:				
 Floor Plans 	 Shelter Structure 	 Reinforcement 				
 Cross and 	including Strike Points	Schedule of Supporting				
Longitudinal	 Entrance Areas 	Structure around all CD				
Section Views	 CD Doors and Supporting 	Doors				
 Elevation Views 	Structure					
	 Air Shafts and Bomb Pits 					
	 Services Penetrations in 					
	Entrance Areas					
All 2D Views and Schedules shall be placed on sheets						

A. TS Full Model

All views shall contain the following information generated from BIM.

The Full 3D model shall show the entire CD shelter, and shall include the following:

- a) Entrance and exit configurations;
- b) Strike point lines and locations (massing elements or dummy object);
- c) Entrance hinged doors (EHDs), or sliding doors (SLDs) and door chambers (if used in place of EHDs);
- d) PT doors including any related bypass areas; and
- e) Ventilation air shafts with bomb pit configurations.

B. TS Plans, Sections and Elevations

The 2D plans, sections and elevations shall illustrate clearly the following:

- a) Entrance area layout leading from opening at ground level (or elsewhere) to the EHD and PT (small) door,
- b) Strikepoint line and distance measured from the strike point to the EHD and PT door,
- c) Wall and slab thicknesses, in particular, those around the CD doors, and
- d) Size of openings and type of services penetrations such as MCTs, puddle flanges, etc. in walls or slabs next to or in the vicinity of the CD doors.
- e) The BIM generated views shall show all associated dimensions, labels, spacing, etc. and shall demonstrate compliance with the *CD Shelter Requirements for MRT Stations*. The same shall apply if a sliding door and associated door chamber are used in place of the Entrance hinged door.

C. TS Entrance Areas Part Model

For each entrance area leading to a CD door, a part 3D model shall be provided to illustrate clearly the following:

- a) Entrance configuration from opening at ground (or elsewhere) to the CD doors
- b) Strike point line;
- c) Entrance hinged door (EHD), or sliding door and associated door chamber (if used in place of EHD);

- d) PT door including any related bypass area; and
- e) Openings for services penetrations such as MCTs, puddle flanges, etc. for air ducts, pipes, electrical cables trays, trunkings and conduits in walls or slabs next to or in the vicinity of the CD doors.

D. TS Entrance Areas Plans, Sections and Elevations

The 2D plans, sections and elevations shall illustrate clearly the following:

- a) Entrance area layout leading from opening at ground level (or elsewhere) to the EHD and PT (small) door,
- b) Strike point line and distance measured from the strikepoint to the EHD and PT door.
- c) Wall and slab thicknesses, in particular, those around the CD doors, and
- d) Size of openings and type of services penetrations such as MCTs, puddle flanges, etc. in walls or slabs next to or in the vicinity of the CD doors.
- e) The BIM generated views shall show all associated dimensions, labels, spacing, etc. and shall demonstrate compliance with the *CD Shelter Requirements for MRT Stations*. The same shall apply if a sliding door and associated door chamber are used in place of the Entrance hinged door.

E. CD Doors and Supporting Structure Part Model

Part 3D models of the CD doors (EHD, SLD, or PT) and its supporting structure shall be provided to illustrate clearly the following:

- a) Supporting structure (walls, slabs, corbels, lintels, etc.) and its reinforcement bars (rebar) to resist CD door line loads, including interfacing bars with door frame;
- b) Door frame including fish tails, holding bars, anchor studs, etc.;
- c) Top and bottom maintenance pits (for EHD);
- d) Floor levels and kerbs;
- e) Floor and wall hooks for chain block shackles (for EHD and/or SLD);
- f) SLD chamber (if SLD is used); and
- g) Openings for services penetrations such as for air ducts, pipes, electrical cables, trunking and conduits in walls or slabs next to or in the vicinity of the CD doors.
- h) Models shall show buildability and no obstructions between the rebar and the door frame parts.

F. CD Doors and Supporting Structure Plans, Sections and Elevations

The 2D plans, sections and elevations shall illustrate clearly the same as required above under *Part 3D Model* but shall in addition, show all associated dimensions, rebar sizes, rebar spacing, labels, etc. to demonstrate compliance with the *CD Shelter Requirements for MRT Stations*.

G. CD Doors Supporting Structure Schedule

Table 8- Steel reinforcement bar size and spacing for each curtailment marking

Curtailments and welded steel fabric mesh and steel bars						
Curtailment marking	а	b	е	f	g	h
Steel Mesh	D10	D10	D10	D10	D10	D10
Curtailments and steel bars						
Curtailment marking	С	d	m	i		
Steel bar	H10-	H10-	H10-	H10-		
	100	100	100	100		

H. Air Shafts and Bomb Pits Part Model

For each air shaft and its bomb pit, a Part 3D model shall be provided to illustrate clearly the following:

- a) Ventilation air shaft configuration from opening at ground level (or elsewhere) to the plant room interface; and
- b) Bomb pit.

I. Air Shafts and Bomb Pits Plans, Sections and Elevations

The 2D plans, sections and elevations shall illustrate clearly the following:

- a) Air shaft layout from opening at ground (or elsewhere) to the plant room interface;
- b) Wall and slab thicknesses;
- c) Air shaft and bomb pit dimensions; and
- d) The BIM generated views shall show all associated dimensions, labels, spacing, etc. to facilitate review and shall demonstrate compliance with the *CD Shelter Requirements for MRT Stations*.

J. CD Technical Requirements for S10-S29 Public Shelters

Where a transit CD shelter is to be designed and built based on the CD Technical Requirements for S10-S29 Public Shelters, or Addition and Alteration (A&A) works are carried out on such S10-S29 Shelters, the Qualified Person (QP) shall familiarize himself with the aforementioned document before preparing the Structural BIM submission.

The submissions shall comprise native BIM 3D models, 2D plans, sections and elevations that are illustrative with details, dimensions, spacing, labels, schedules, material types, etc. to show compliance with the Technical Requirements for S10-S29 Public Shelters. The level of detail and information shown in the 2D plans, sections and elevations shall be similar as that of traditional (2D) structural plan submissions.

The QP shall consult the Transit Shelter Engineering Department of BCA for clarification.

1.5 Structural Requirements for Public Shelter (PS)

1.5.1 General Requirements

The Qualified Person (QP) shall familiarize himself with the Technical Requirements for S1-S5 Public Shelter before preparing the Structural BIM submission for public shelters. The submission shall comprise native BIM 3D models, 2D plans, sections and elevations that are illustrative with details and dimensions, to demonstrate compliance with the public (CD) shelter technical requirements. The level of detail and information shown in the 2D plans, sections and elevations shall be similar as that of traditional (2D) structural plan submissions.

The submission shall comprehensively cover important aspects of the shelter described in the following sections.

The QP shall consult the Civil Defence Shelter Engineering Department of BCA for clarification.

Civil Defence Public Shelters (PS) Submission Requirements

(Required Views, but not limited to)

2D Views	3D Views	Schedules
General Notes	Full Physical Model (PM)	Schedules for all structural
 Typical Detail 	showing the following:	elements not limited to:
 Typical 	 Public Shelter 	 Beam, Column, Slab
Connections	 Entrance Areas 	and Wall Schedule
Non Typical	 CD Doors and 	 Reinforcement Bars
Connections	Supporting Structure	Schedule
 Floor Plans 	Air Shaft	 CD Door, Hatch,
 Cross and 	 Penetrations/Openings 	Window Schedule
Longitudinal		CD Valve Schedule
Section Views		
Elevation Views		
All 2D Views and Schedules shall be placed on sheets		

A. PS Structure Full Model

The 3D model shall show the entire CD shelter, and shall include the following:

- a) Entrance and exit configurations;
- b) Imaginary line of sight to the BD;
- c) Blast doors (BD), blast hatches (BH), blast fragmentation door (BFD), blast fragmentation window (BFW) and including any related bypass areas;
- d) Gas-tight doors (SSD); and
- e) Air shafts.

B. PS Structure Plans, Sections and Elevations

The 2D plans, sections and elevations shall illustrate clearly the following:

- a) General layout at CD levels or space associated with the CD shelter.
- b) General notes stating the material type and grade (steel, concrete reinforcement bars) use for public shelter.
- c) Bounds of protection.
- d) Entrance area configurations leading from the opening at ground level (or elsewhere) to the CD doors, including imaginary line of sight to the BD and wall and slab thicknesses.
- e) Blast doors (BD), blast hatches (BH), blast fragmentation door (BFD) and blast fragmentation window (BFW), blast valves clearances from adjacent walls, and adjacent wall and slab thicknesses.
- f) Ventilation air shafts configurations from opening at ground level (or above ground level) to plant room areas.
- g) The dimension and thickness of wall (external and internal) and slab.
- h) The reinforcement details for the public shelter wall and slab shall be clearly shown on plan, section and elevation (if any) with curtailment marking, bar size and spacing, lapped and anchorage length. In addition, the spacing of reinforcement bars shall be as shown below in Fig. 20, 21 and 22.
- i) Schedule of reinforcement bars for the PS shall be provided with types of rebar, rebar size, rebar spacing, curtailment marking to meet the technical requirements. Table 9 shows the sample of schedule of reinforcement bars.

C. PS Reinforcement Schedule

Table 9 - Steel reinforcement bar size and spacing for each curtailment marking

Curtailments of welded steel fabric mesh and steel bars						
Curtailment marking	а	b	е	f	g	h
Steel Mesh	D16	D16	D16	D16	D16	D16
Curtailments and steel bars						
Curtailment marking	С	d	m	i		
Steel bar	H20-	H20-	H20-	H20-		
	100	100	100	100		

The Reinforcement bars detail around Blast doors (BD), blast hatches (BH), blast fragmentation door (BFD) and blast fragmentation window (BFW), blast valves and Ventilation air shafts and other opening or recess shall be shown on plan, section and/or elevations.

Fig. 20 - Section showing reinforcement spacing of a typical 1-storey public shelter

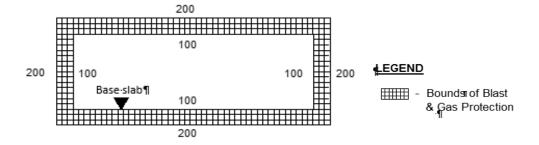
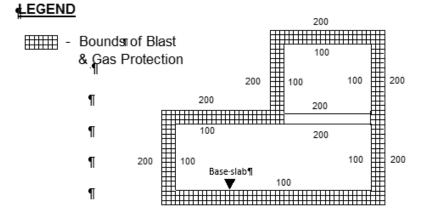



Fig. 21 - Section showing reinforcement spacing of a typical 2-storey public shelter

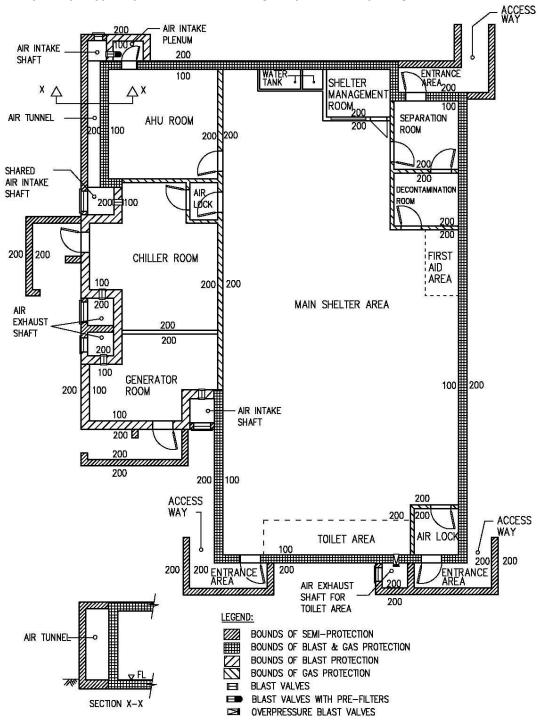


Fig. 22 - Layout of a typical public shelter showing reinforcement spacing

CORE INFORMATION (CI)

Core Information or CI are minimum object attributes/parameters required to be embedded for all load bearing elements.

BOREHOLE ATTRIBUTES

GEOTECHNICAL DUMMY OBJECT		
Attribute Name	Sample Value	Description
PROJ_ID	A0677-00001-2015	Project reference no. of the ST
		submission
PROJ_NAME	Soil Investigation Works at	Project Title
	No.XXXXX Road, Singapore XXXXXX	
PROJ_CLNT	Mr. XXX	Project client/ Data owner
HOLE_ID	BH1	Borehole reference identifier(as per
		original borelog/ AGS data)
HOLE_STAR	15/7/2015	Borehole start to drill date
HOLE_NATN	36010.451	Borehole coordinate: Northing
HOLE_NATE	13169.723	Borehole coordinate: Easting
HOLE_GL	6.514	Borehole ground level (RL)
HOLE_FDEP	45	Borehole final depth (m)
ROCK_HEAD	33.5	Rock head depth(if encountered)
FORMATION	Granite	Geological formation

SUBSTRUCTURE ELEMENTS

PILES	
Parameter Name	Sample Value
Pile Mark	P1
Pile Type	Bored, Secant, CBP
Pile Diameter/Size	600/ 500x500
Loading (kN)	1500
Material Grade	C40/ G550
Remarks/Status	New/ Existing/ Demolish

PILE CAP		
Parameter Name	Sample Value	
Pile Cap Mark	PC1	
Pile Cap Type	2/ 3/ 4/ 5/ 6/ 8/ 10	
Pile Cap Size	500x500	
Group Loading (kN)	4500	
Concrete Grade	C40	
Remarks/Status	New/Existing/Demolish	

SUBSTRUCTURE SLAB	
Parameter Name	Sample Value
Slab Mark	S1
	Default: InSitu
Slab Type	Composite/ Suspended
Slab Thickness	300
Concrete Grade	C40
Remarks/Status	New/ Existing/ Demolish

RETAINING WALL	
Parameter Name	Sample Value
Wall Mark	W1
	Default: InSitu
Wall Type	Precast
Wall Thickness	300
Concrete Grade	C40
Remarks/Status	New/ Existing/ Demolish

TUNNELS	
Parameter Name	Sample Value
Tunnel Mark	TU1
Tunnel Type	Shaft/ Cavern
Tunnel Dimension	500
Concrete Grade	C40
Remarks/Status	New/ Existing/ Demolish

PIER AND COLUMNS	
Parameter Name	Sample Value
Pier Mark	P1
Pier Type	Column/ Caisson/ Abutment
Pier Dimensions	600x500
Concrete Grade	C40
Remarks/Status	New/ Existing/ Demolish

STRUCTURAL FRAMING		
Parameter Name	Sample Value	
Beam Mark	GR1/1HB1	
Beam Type	Default: InSitu	
	Precast/ Girder	
Grade Beam Dimension	600x500	
Concrete Grade	C40	
Remarks/Status	New/ Existing/ Demolish	

OTHER DETAILS OF SUBSTRUCTURE WORKS		
Parameter Name	Sample Value	
Element Mark	A1	
Element Type	Ground Treatment/ Slope Protection/ Soil Anchors	
Element Dimensions	400x600	
Element Offset	100	
Material Grade	C40	
Remarks/Status	New/ Existing/ Demolish	

CRITICAL CONNECTIONS		
Parameter Name	Sample Value	
Element Mark	A1	
Element Type	Concrete: Rebar/ Mesh/ Tendon	
	Steel: Bolt/ Anchor/ Stud/ Weld	
Element Dimensions	400x600	
Element Offset	100	
Material Grade	C40	
Remarks/Status	New/ Existing/ Demolish	

SUPERSTRUCTURE ELEMENTS

FRAMING	
Parameter Name	Sample Value
Beam Mark	C1
Beam Type	Beam/ Girder/ Joist/ Purlin
Beam Size	600x800
Beam Offset	200
Beam Rotation	30
Construction Method	Default: InSitu
	Precast
Concrete/Steel Grade	C40/ G550
Remarks/ Status	New/ Existing/ Demolish

COLUMNS/ PEDESTAL	
Parameter Name	Sample Value
Column Mark	C1
Column Type	Square/ Circular
Column Diameter/Size	600/ 500x500
Column Offset	200
Column Rotation	30
Construction Method	Default: InSitu
	Precast
Loading (kN)	1500
Concrete/Steel Grade	C40/ G550
Remarks/Status	New/ Existing/ Demolish

SUPERSTRUCTURE FLOOR/SLAB	
Parameter Name	Sample Value
Slab Mark	S1
Slab Type	Default: InSitu
	Composite/ Suspended
Slab Thickness	300
Concrete Grade	C40
Remarks/Status	New/ Existing/ Demolish

SUPERSTRUCTURE WALLS	
Parameter Name	Sample Value
Wall Mark	W1
Wall Type	Default: InSitu
	Precast
Wall Thickness	300
Wall Offset	100
Material Grade	C40
Remarks/Status	New/ Existing/ Demolish

TRUSS	
Parameter Name	Sample Value
Truss Mark	W1
Truss Type	Pratt/ Warren: Bowstring/
	Scissors; Dual/ Mono
Truss Length	20000
Truss Offset	250
Material Grade	C40
Remarks/Status	New/ Existing/ Demolish

CIRCULATION	
Parameter Name	Sample Value
Circulation Mark	ST1
Circulation Type	Staircase/ Ramps
Circulation Length	8000
Circulation Offset	250
Circulation Width	1200
Material Grade	C40
Remarks/Status	New/ Existing/ Demolish

OTHER DETAILS OF SUPERSTRUCTURE WORKS	
Parameter Name	Sample Value
Element Mark	A1
Element Type	Lift/ Cladding/ Prestress/ Post
	Tension/ PPVC/ CLT/ Glulam
Element Dimensions	400x600
Element Offset	100
Material Grade	C40
Remarks/Status	New/ Existing/ Demolish

CRITICAL CONNECTIONS	
Parameter Name	Sample value
Element Mark	A1
Element Type	Concrete: Rebar/ Mesh/ Tendon
	Steel: Bolt/ Anchor/ Stud/ Weld
	Timber: CLT/ Glulam
Element Dimensions	400x600
Element Offset	100
Material Grade	C40
Remarks/Status	New/ Existing/ Demolish

CIVIL DEFENCE SHELTER ELEMENTS

HOUSEHOLD SHELTER (HS)	
Parameter Name	Sample Value
HS Door Opening	700x1900
Curtailment Marking	a/b/c/d/e/f/g/h/i/j/k
Steel Mesh	D10/13
Steel Bar	H10-100
Wall Side	WS-1
Tension Lap Length	300
Rebar Cover	35
Ventilation Sleeve Opening	150
Floor Thickness	175
Wall Thickness	300
Concrete Grade	C40
Construction Method	Default: inSitu
	Precast
Remarks/Status	New/ Existing/ Demolish

STOREY SHELTER (SS)	
Parameter Name	Sample Value
SS Door Net Opening	1000x1900
Curtailment Marking	a/b/c/d/e/f/g/h/i/j/k
Steel Mesh Size	D10/13
Steel Bar Spacing	H10-100
Wall Side	WS-1
Tension Lap Length	300
Rebar Cover	35
Ventilation Sleeve Opening	150
Floor Thickness	175
Wall Thickness	300
Material Grade	C40
Construction Method	Default: inSitu
	Precast
Remarks/Status	New/ Existing/ Demolish

STAIRCASE STOREY SHELTER (SSS)	
Parameter Name	Sample Value
SSS Door Net Opening	1000x1900
Curtailment Marking	a/b/c/d/e/f/g/h/i/j/k
Steel Mesh Size	D10/13
Steel Bar Spacing	H10-100
Wall Side	WS-1
Tension Lap Length	300
Rebar Cover	35
Ventilation Sleeve Opening	150
Floor Thickness	200
Wall Thickness	300
Stair Thickness	200
Material Grade	C40
Construction Method	Default: inSitu
	Precast
Remarks/Status	New/ Existing/ Demolish

TRANSIT SHELTER (TS)	
Parameter Name	Sample Value
Structural Element	Slab, Wall, Beam, Column
Shelter Type	S1, S2, S3, S4, S5
Minimum Dimension	400, 500, 600
Steel Mesh Size	D10/13
Steel Bar Spacing	H10-100
Wall Side	WS-1
Tension Lap Length	300
Tension Anchorage Length	300
Rebar Cover	35
Ventilation Sleeve Opening	150
Floor Thickness	200
Wall Thickness	300
Stair Thickness	200
Material Grade	C40
Construction Method	Default: inSitu
	Precast
Remarks/Status	New/ Existing/ Demolish

Code of Practice for BIM e-Submission: C&S Requirements

PUBLIC SHELTERS (PS)	
Parameter Name	Sample Value
Door Opening	700x1900
Curtailment Marking	a/b/c/d/e/f/g/h/i/j/k
Steel Mesh	D10/13
Steel Bar	H10-100
Rebar Cover	35
Ventilation Sleeve Opening	150
Floor Thickness	175
Wall Thickness	300
Stair Thickness	200
Material Grade	C40
Construction Method	Default: inSitu
	Precast
Remarks/Status	New/ Existing/ Demolish

COLOUR CODES

The following colours are to be used for superstructure load bearing elements for submission. The colours refer to object outline and not on element face. BCA will issue default BCA templates for all major BIM authoring software to automate the colour assignment via element or category filters.

Critical Key Elements

Element Category	Colour	Red	Green	Blue
Cantilever Elements (>6m)		0	0	255
Long Span Structure (>15m)		0	255	0
Transfer Structures		225	0	0
Permanent ERSS		210	180	140

DEFINITION OF TERMS

	T
Borehole Object	Vertical sticks associated with basic soil information which could be
	stored in the schedule, and to show the borehole locations within this
	construction site.
СО	means Construction Stage where the building works are carried by
	the contractor
DD	means Detailed Design Stage equivalent to ST and CS submissions
Non Typical	are defined as details other than Typical Details
Details	
RP	means Record Plans, production of record models/record plans on
	or before obtaining TOP/CSC
SFL	means Structural Floor Level
SHD	means Singapore Height Datum
Substructure	refers to all load bearing structural elements below ground
(SUB)	
Superstructure	refers to all load bearing structural elements above ground
(SUP)	
Typical Details	are defined as repeating details affecting more than 50% of that
	similar element
	•

ANNEX I. REQUIREMENTS FOR CIVIL DEFENCE SHELTERS

Standard Certification for Civil Defence Shelter Plans

I,, hereby submit the detailed civil defence shelter plans *(and design calculations) prepared by me and certify that:							
(a) the preparation of these civil defence shelter plans are in accordance with the Building Control Regulations; and(b) the civil defence shelter works shown on these plans are designed in accordance with the shelter technical requirements.							
Total number of civil defence shelter plans submitted: and total number of pages of design calculations:							
Qualified Person's Signature and Stamp Date							

^{*} Delete where not applicable

ANNEX II. FIGURES FOR HS, SS AND SSS

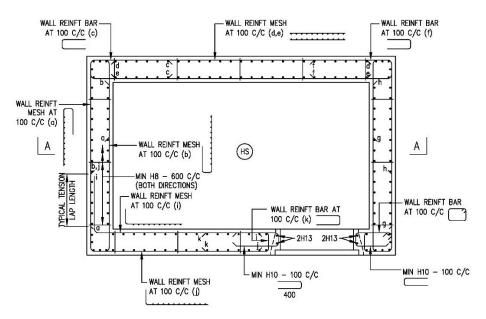


FIGURE 1a. PLAN OF HS WALL AT DOOR OPENING

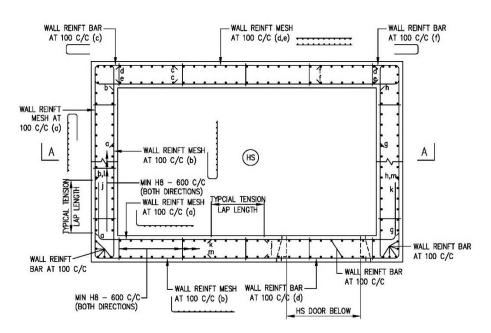


FIGURE 1b. PLAN OF HS AND SS WALL ABOVE DOOR OPENING

TABLE 1g. STEEL REINFORCEMENT BAR SIZE AND SPACING FOR EACH CURTAILMENT MARKING FOR HS (SAMPLE TABLE)

	CURTAILMENT MARKING AND WELDED STEEL FABRIC MESH								
CURTAILMENT MARKING	а	b	d	е	g	h	i	j	
STEEL MESH	D10/13	D10/13	D10/13	D10/13	D10/13	D10/13	D10/13	D10/13	
CURTAILMENT MARKING AND STEEL BARS									
CURTAILMENT MARKING	С	f	k						
STEEL BAR	H10-100	H10-100	H10-100						

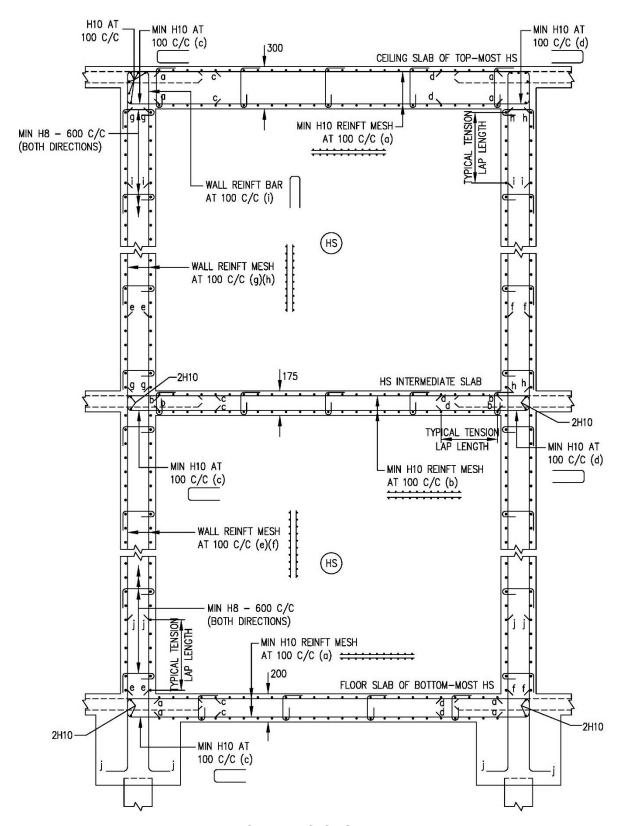


FIGURE 1c. SECTION A - A

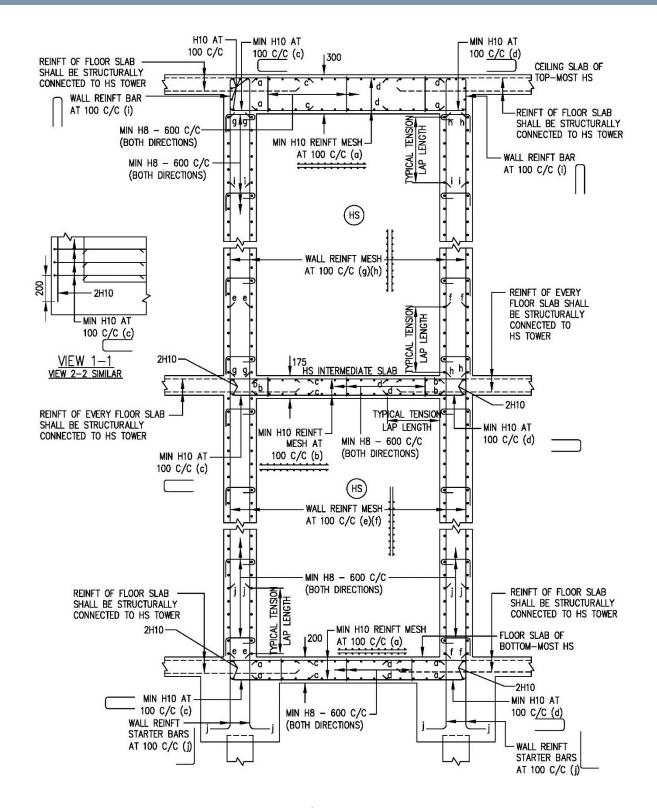


FIGURE 1d. SECTION B - B

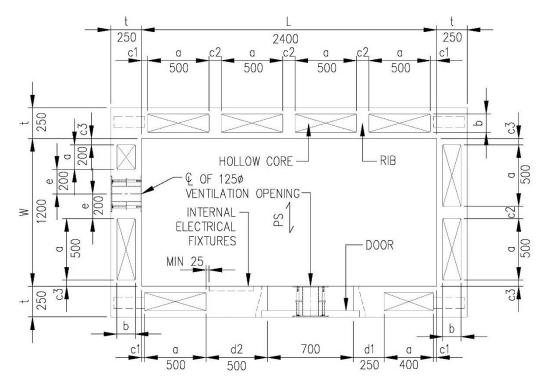


FIGURE 1e (i). PRECAST HS WITH HS DOOR ON LONGER WALL AND ONE OF THE VENTILATION

SLEEVE ABOVE THE DOOR (TYPE 1)

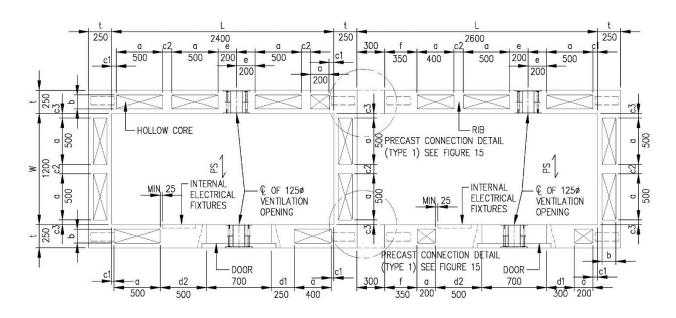


FIGURE 1e (ii). PRECAST HS AND C-SHAPED PRECAST HS CONNECTED AT THE SHORTER WALL

AND WITH HS DOOR ON LONGER WALL (TYPE 4)

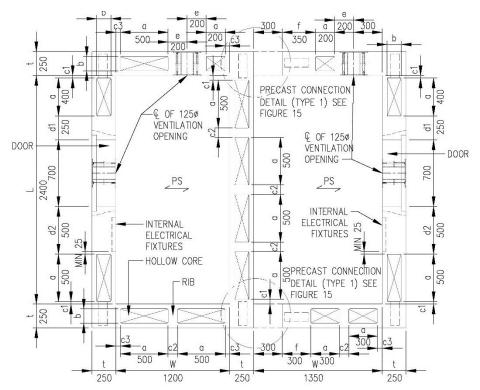


FIGURE 1e (iii). PRECAST HS AND C-SHAPED PRECAST HS CONNECTED AT THE LONGER WALL
AND WITH HS DOOR ON LONGER WALLS (TYPE 5)

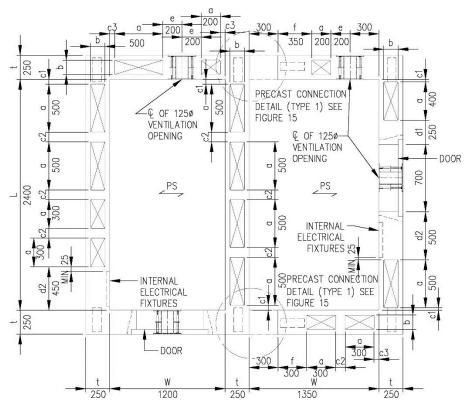


FIGURE 1e (iv). PRECAST HS AND C-SHAPED PRECAST HS CONNECTED AT THE LONGER WALL AND WITH HS DOOR EACH ON LONGER WALL AND SHORTER WALL (TYPE 5A)

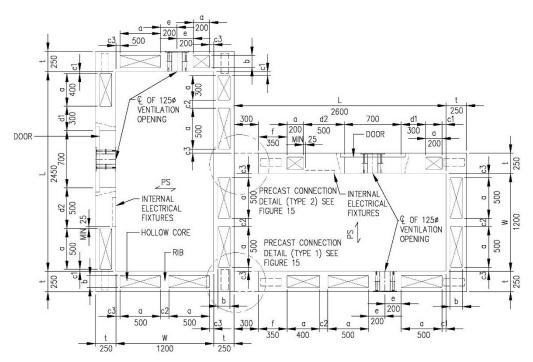


FIGURE 1e (v). PRECAST HS AND C-SHAPED PRECAST HS WITH CONNECTION BETWEEN
LONGER AND SHORTER WALLS RESPECTIVELY AND WITH HS DOOR
ON LONGER WALLS (TYPE 6)



FIGURE 1e (vi). PRECAST HS AND C-SHAPED PRECAST HS WITH CONNECTION BETWEEN
LONGER AND SHORTER WALLS RESPECTIVELY AND WITH HS DOOR EACH ON LONGER WALL
AND SHORTER WALL (TYPE 6A)

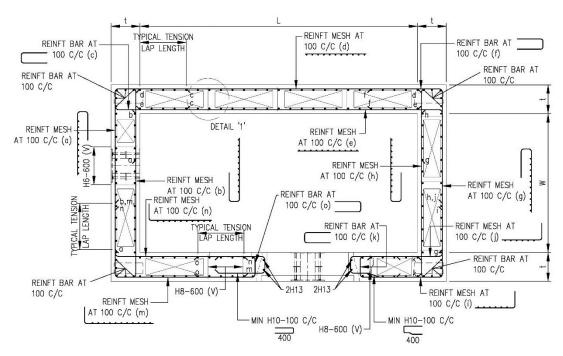


FIGURE 1f. REINFORCEMENT BAR DETAILS OF WALL, RIB AND BLAST DOOR ON LONG WALL

OF PRECAST HS

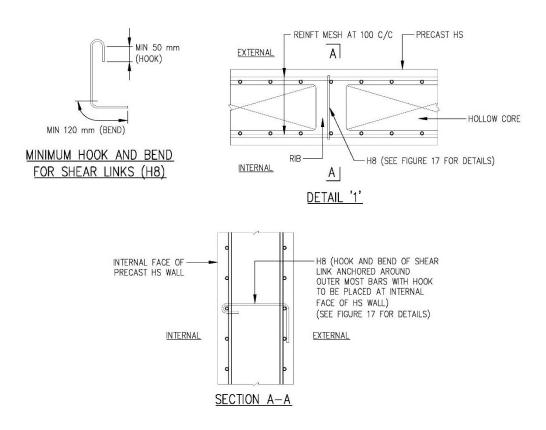


FIGURE 1g. PLAN AND SECTION OF RIB WITH SHEAR LINKS

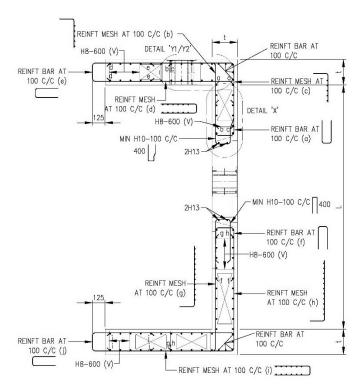


FIGURE 1h. REINFORCEMENT BAR DETAILS OF WALL AND RIB FOR C-SHAPED PRECAST HS

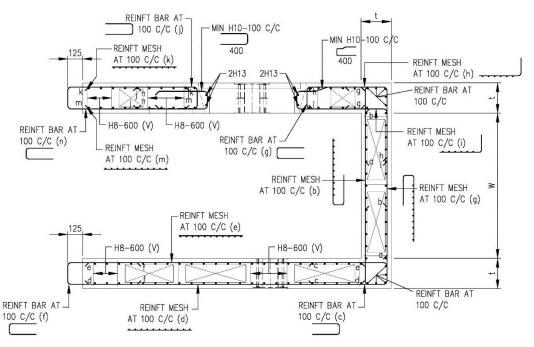


FIGURE 1i. REINFORCEMENT BAR DETAILS OF WALL AND RIB FOR C-SHAPED PRECAST HS

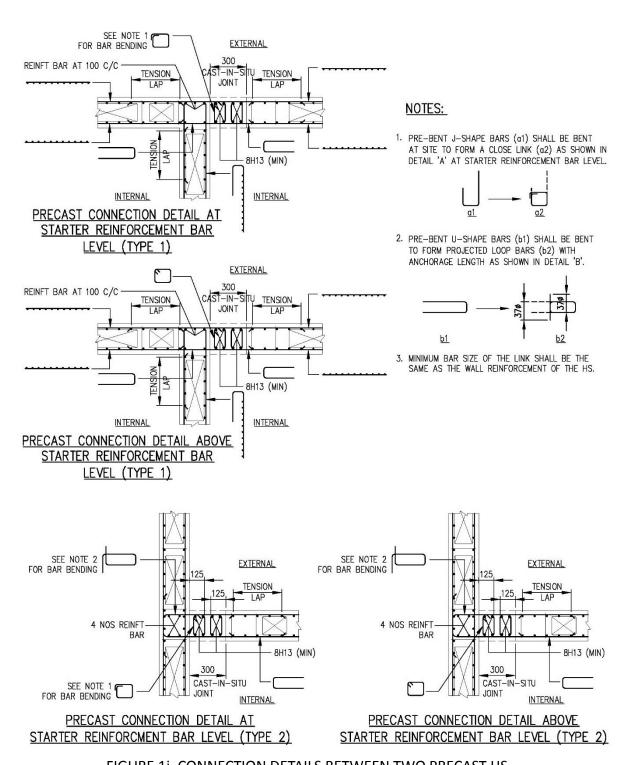


FIGURE 1j. CONNECTION DETAILS BETWEEN TWO PRECAST HS

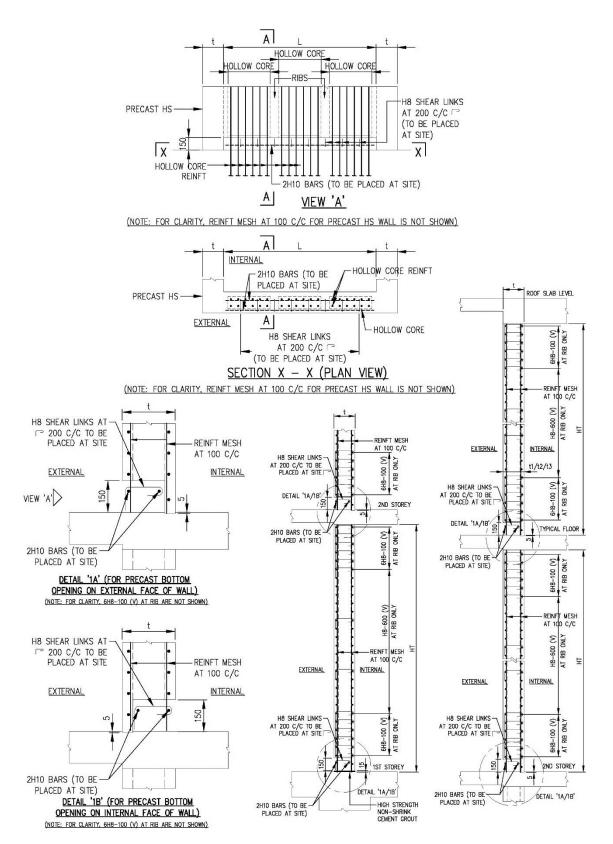


FIGURE 1k. REINFORCEMENT BAR DETAILS OF RIB

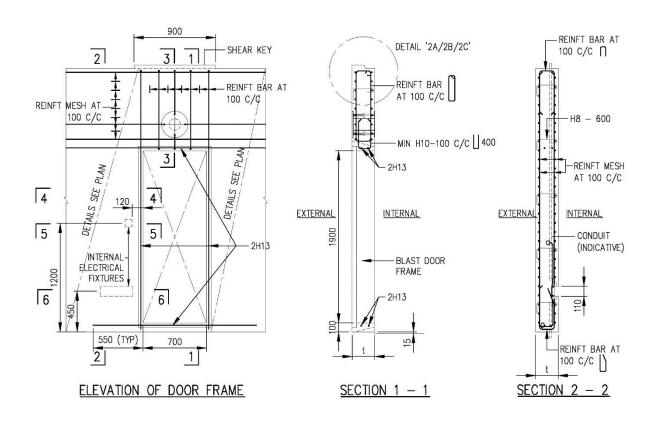
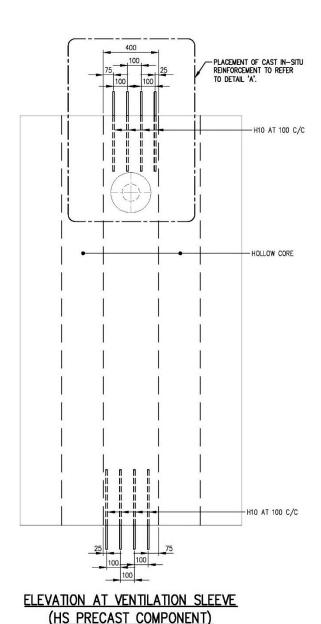
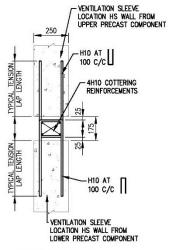



FIGURE 1m. DETAILS OF REINFORCEMENT BAR NEAR DOOR FRAME AND AT ELECTRICAL FIXTURES ON INTERNAL FACE OF PRECAST HS


2H10 COTTERING
REINFORCEMENTS
VENTILATION SLEEVE
LOCATION HS WALL FROM
UPPER PRECAST COMPONENT

VENTILATION SLEEVE
LOCATION HS WALL FROM
LOWER PRECAST COMPONENT

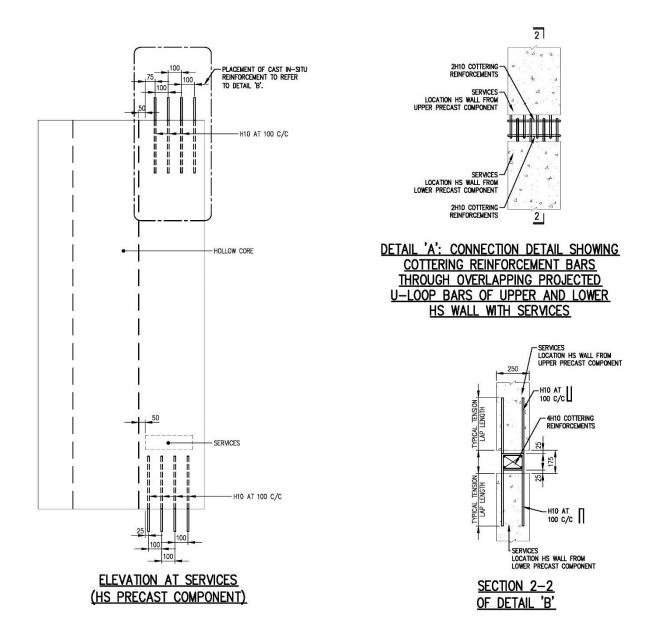
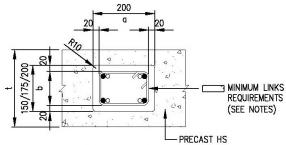
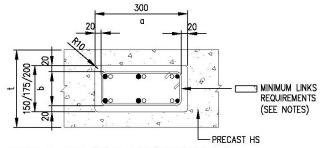
2H10 COTTERING
REINFORCEMENTS

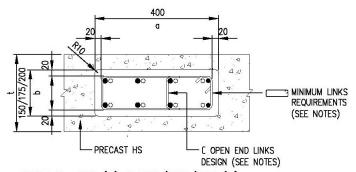
1

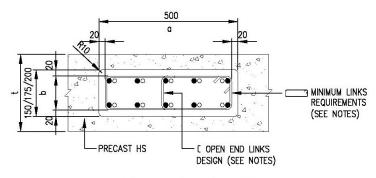
DETAIL 'A': CONNECTION DETAIL SHOWING
COTTERING REINFORCEMENT BARS
THROUGH OVERLAPPING PROJECTED
U-LOOP BARS OF UPPER AND LOWER
HS WALL WITH VENTILATION SLEEVE

SECTION 1-1 OF DETAIL 'A'

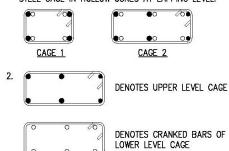
FIGURE 1n. CONNECTION DETAIL AT VENTILATION SLEEVE LOCATION

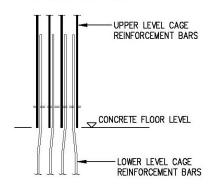





FIGURE 10. CONNECTION DETAIL AT ELECTRICAL SERVICES LOCATION


CAGE 1: 200 (a) X 150/175/200 (b)

CAGE 2: 300 (a) X 150/175/200 (b)


CAGE 3: 400 (a) X 150/200/175 (b)


CAGE 4: 500 (a) X 150/175/200 (b)

NOTES:

 DETAILS BELOW SHOW REINFORCEMENT BARS OF STEEL CAGE IN HOLLOW CORES AT LAPPING LEVEL.

3. CAGE REINFORCEMENT BARS SHALL BE PLACED WITH THE CRANKED PORTION OF THE MAIN BARS AT THE TOP LEVEL FOR LAPPING.

- 4. THERE IS ONLY ONE ARRANGEMENT OF CAGE REINFORCEMENT BARS PER CORE SIZE.
- 5. OPEN END LINKS SHALL BE PROVIDED FOR MAIN BARS WHICH ARE LOCATED 150 mm AWAY FROM RESTRAINT BARS (SEE CAGE 3 AND CAGE 4 DETAILS).
- 6. THE CONCRETE GRADE IN HOLLOW CORE MUST BE AT LEAST THE SAME AS THE CONCRETE GRADE OF PRECAST HS WALL.

FIGURE 1p. CAGE REINFORCEMENT BARS IN HOLLOW CORES

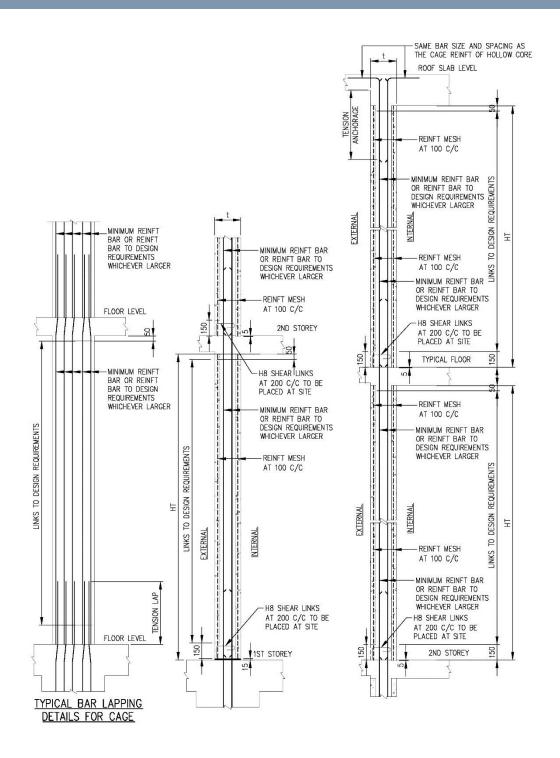
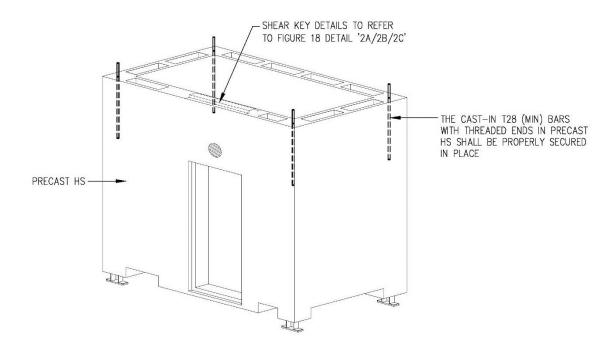
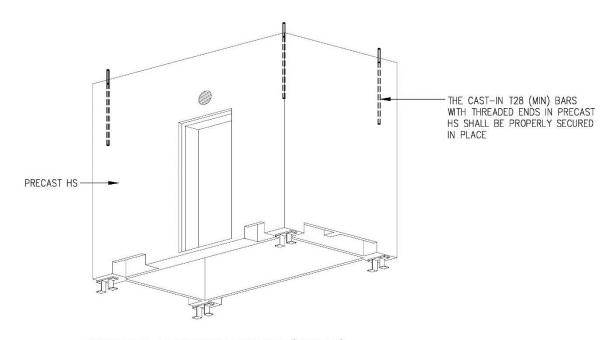
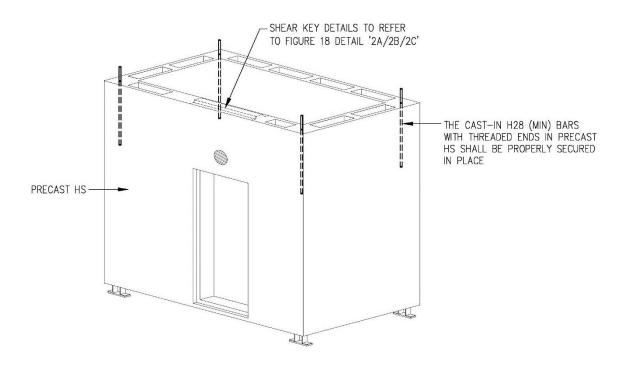




FIGURE 1q. REINFORCEMENT BARS LAPPING IN HOLLOW CORES



ISOMETRIC VIEW FROM TOP (TYPE 1)



ISOMETRIC VIEW FROM BOTTOM (TYPE 1)

FIGURE 1r. ISOMETRIC VIEW OF PRECAST HS WITH BOLTS AND STEEL PLATE CONNECTION (TYPE 1 WITHOUT BLOCKED-OUT FOR BEAM)

ISOMETRIC VIEW FROM TOP (TYPE 2)

ISOMETRIC VIEW FROM BOTTOM (TYPE 2)

FIGURE 1s. ISOMETRIC VIEW OF PRECAST HS WITH BOLTS AND STEEL PLATE CONNECTION (TYPE 2 WITHOUT BLOCKED-OUT FOR BEAM)

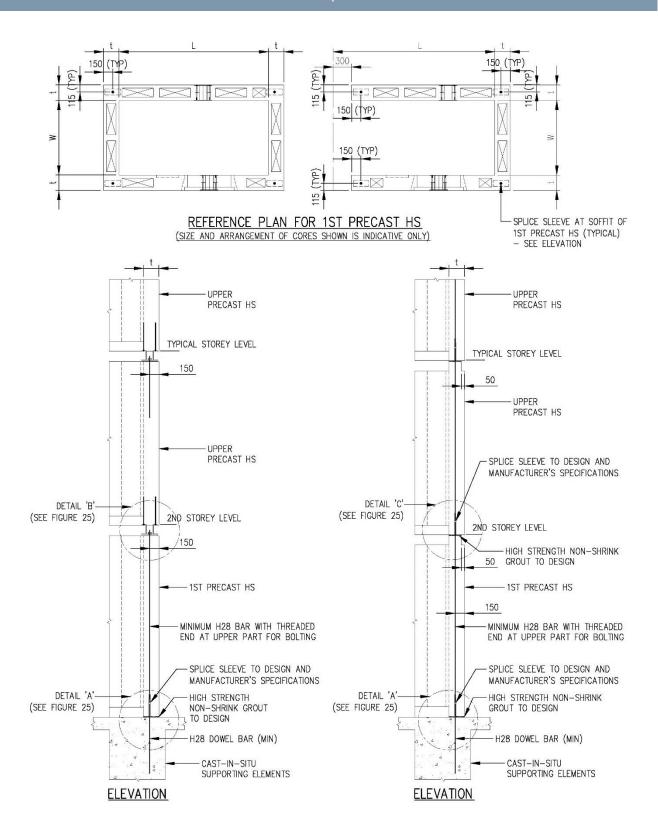


FIGURE 1t. SPLICE SLEEVE CONNECTION DETAILS FOR PRECAST TOWER

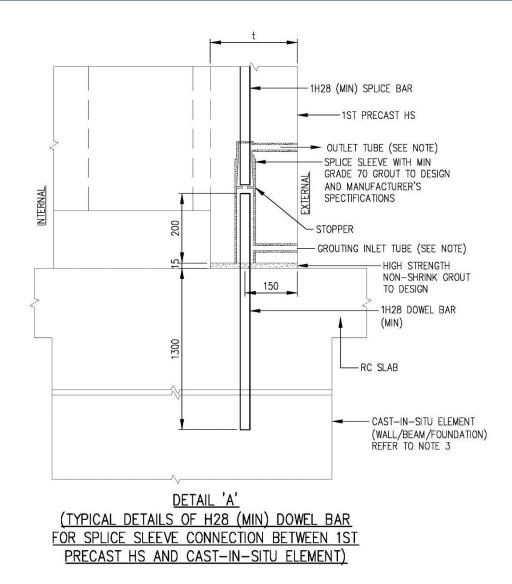
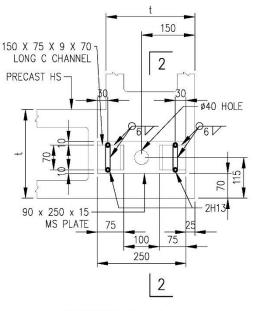



FIGURE 1u. CONNECTION DETAILS BETWEEN LOWER AND UPPER PRECAST HS (DETAIL 'A')

SECTION 1 - 1

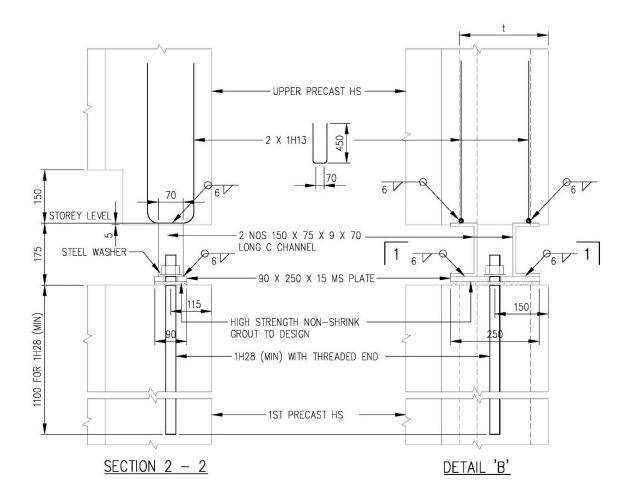


FIGURE 1v. CONNECTION DETAILS BETWEEN LOWER AND UPPER PRECAST HS (DETAIL 'B')

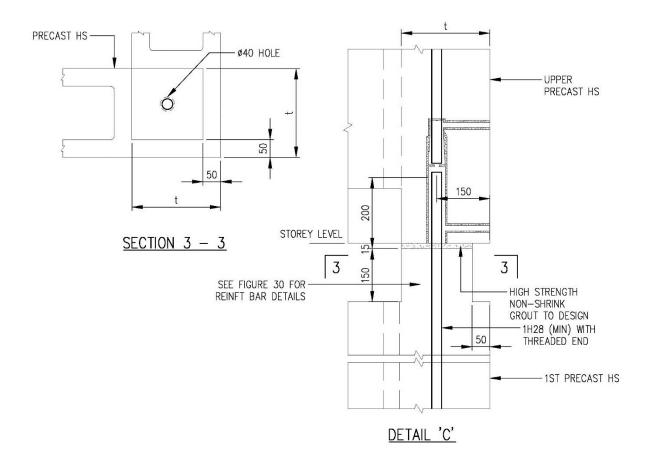


FIGURE 1w. CONNECTION DETAILS BETWEEN LOWER AND UPPER PRECAST HS (DETAIL 'C')

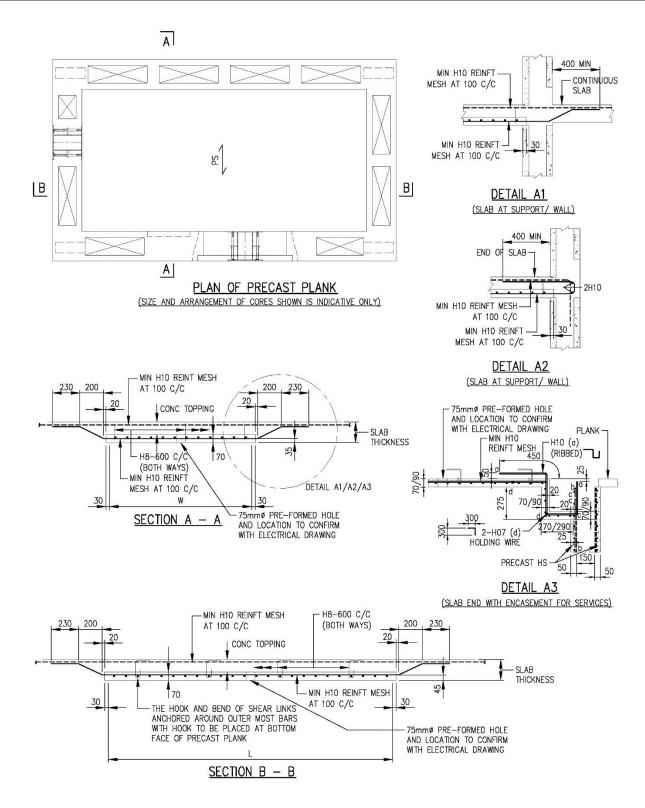


FIGURE 1x. DETAILS OF PRECAST PLANK (MARKED AS PS) AND CONCRETE TOPPING

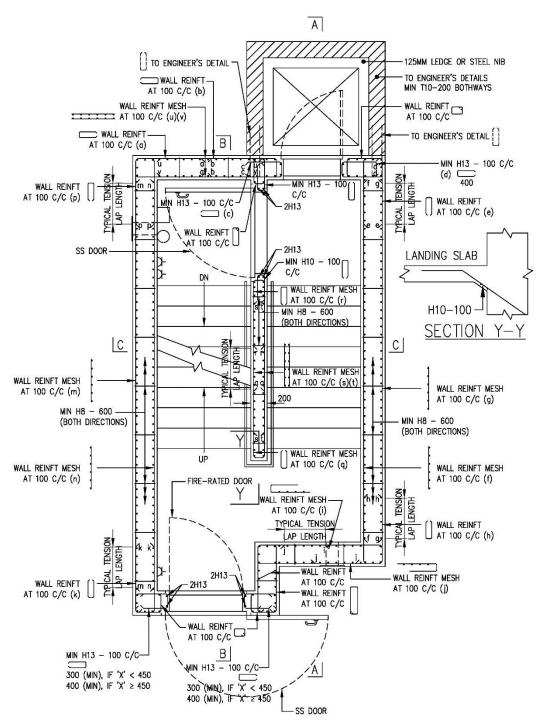


FIGURE 2a. PLAN OF STAIRCASE STOREY SHELTER

TABLE 2a. STEEL REINFORCEMENT BAR SIZE AND SPACING FOR EACH CURTAILMENT MARKING (SAMPLE TABLE)

	CURTAILMENT MARKING AND WELDED STEEL FABRIC MESH								
CURTAILMENT MARKING	f	g	i	j	m	n	u	V	
STEEL MESH	D13/16	D13/16	D13/16	D13/16	D13/16	D13/16	D13/16	D13/16	
	CURTAILMENT MARKING AND STEEL BARS								
CURTAILMENT MARKING	а	b	d	е	h	k	р		
STEEL BAR	H10-100	H10-100	H10-100	H10-100	H10-100	H10-100	H10-100		

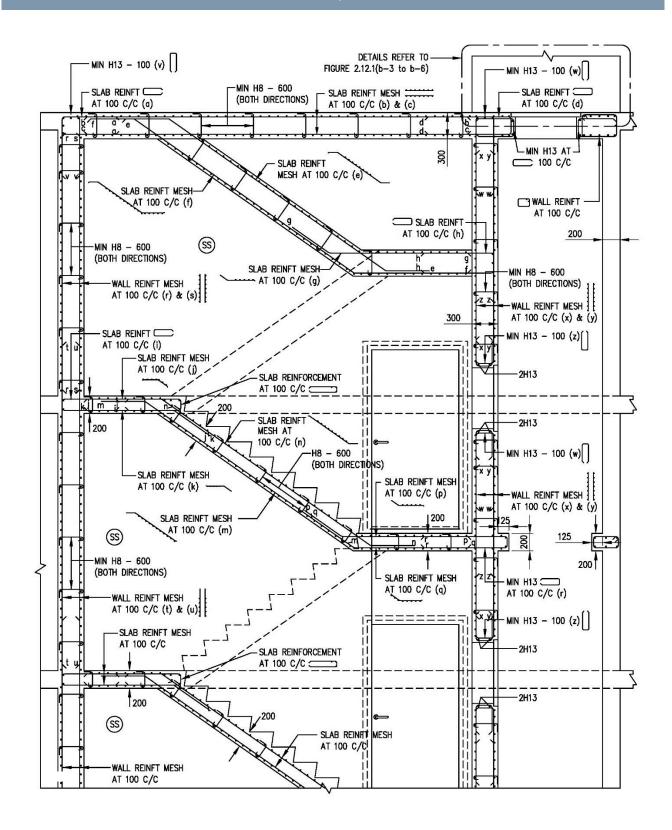


FIGURE 2b. SECTION A - A

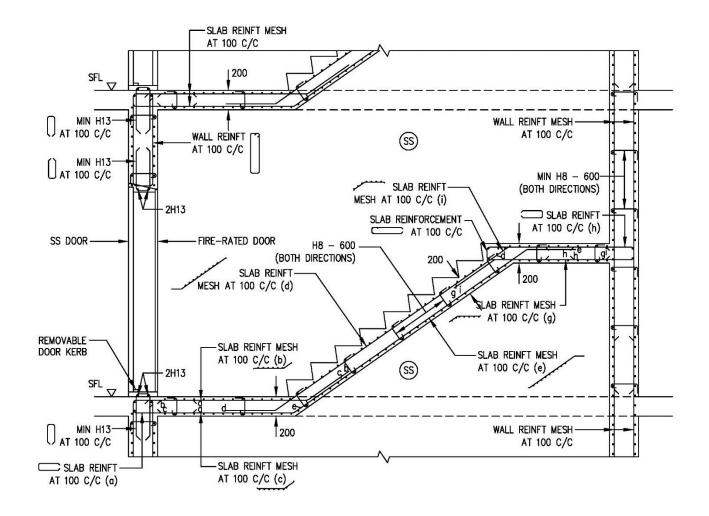
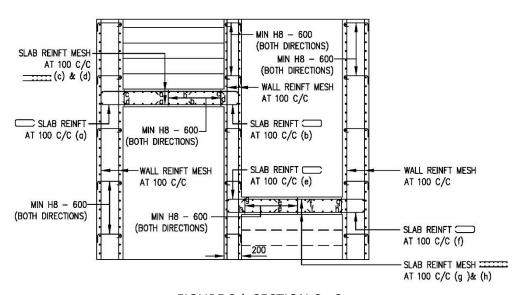
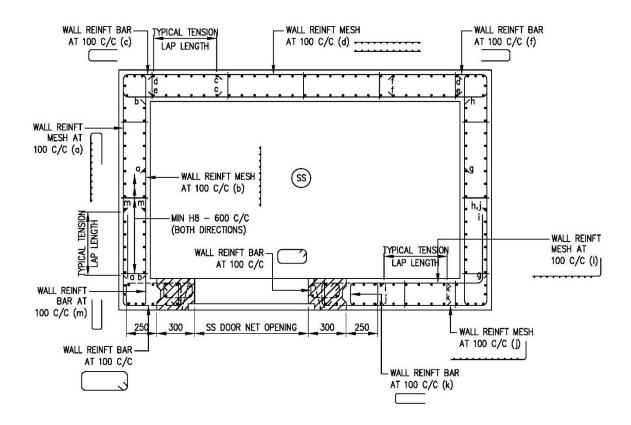
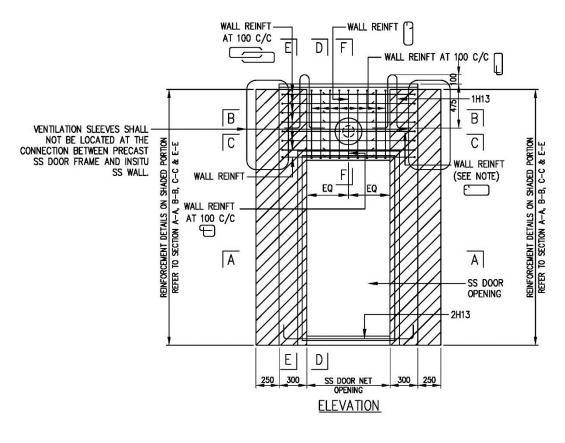


FIGURE 2c. SECTION B - B


FIGURE 2d. SECTION C - C

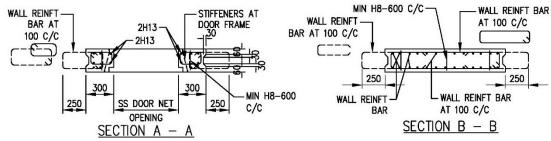


FIGURE 3a. PLAN OF PRECAST HS, SS OR SSS DOOR FRAME (TYPE1)

TABLE 3a. STEEL REINFORCEMENT BAR SIZE AND SPACING FOR EACH CURTAILMENT MARKING (SAMPLE TABLE)

	CURTAILMENT MARKING AND WELDED STEEL FABRIC MESH								
CURTAILMENT MARKING	d	b	d	е	g	h	1	j	
STEEL MESH	D13/16	D13/16	D13/16	D13/16	D13/16	D13/16	D13/16	D13/16	
		CURTAILMENT MARKING AND STEEL BARS							
CURTAILMENT MARKING	С	f	k	m					
STEEL BAR	H10-100	H10-100	H10-100	H10-100					

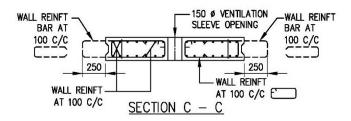


FIGURE 3B. PLAN OF PRECAST HS, SS or SSS DOOR FRAME (TYPE 1)

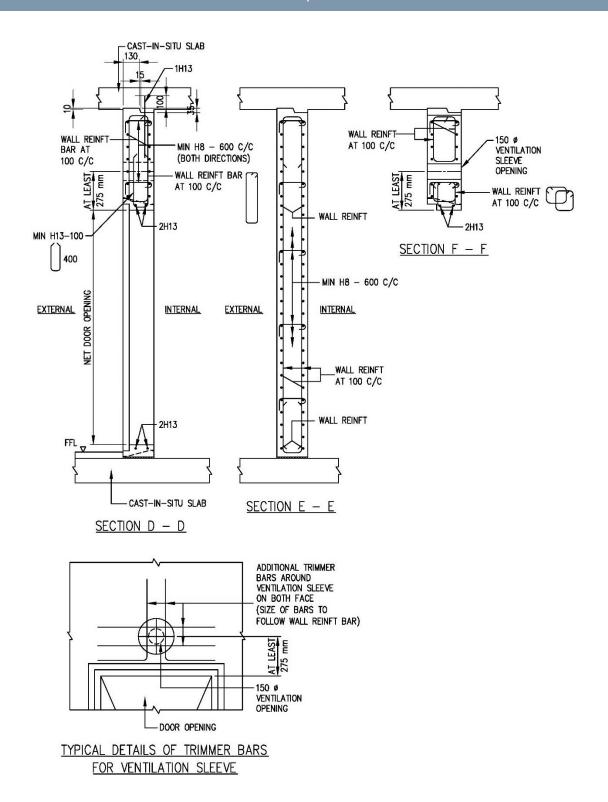


FIGURE 3c. PLAN OF PRECAST HS, SS or SSS DOOR FRAME (TYPE 1)



FIGURE 4a. PLAN OF PRECAST HS, SS or SSS DOOR FRAME (TYPE 2)

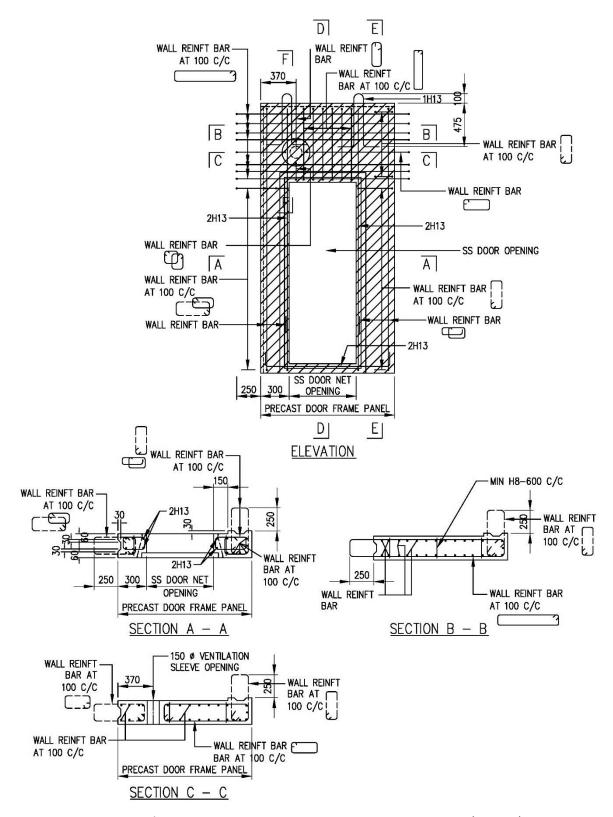


FIGURE 4b. PLAN OF PRECAST HS, SS or SSS DOOR FRAME (TYPE 2)

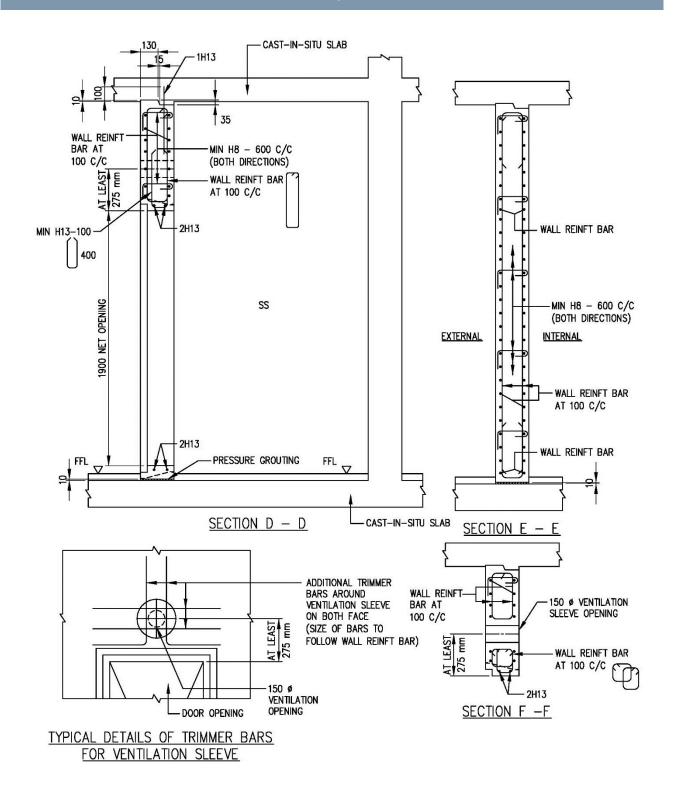


FIGURE 4c. PLAN OF PRECAST HS, SS or SSS DOOR FRAME (TYPE 2)

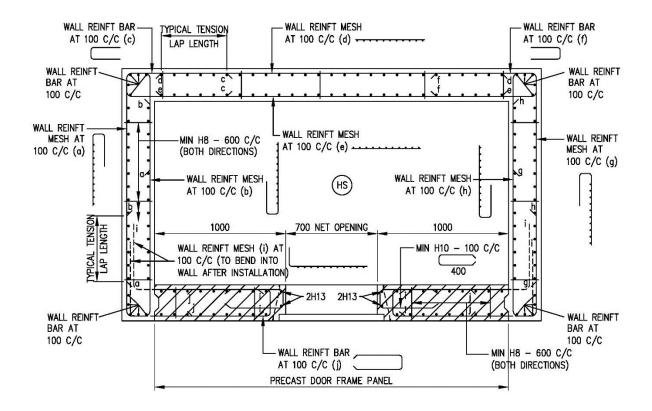


FIGURE 5a. PLAN OF PRECAST HS, SS or SSS DOOR FRAME (TYPE 3)

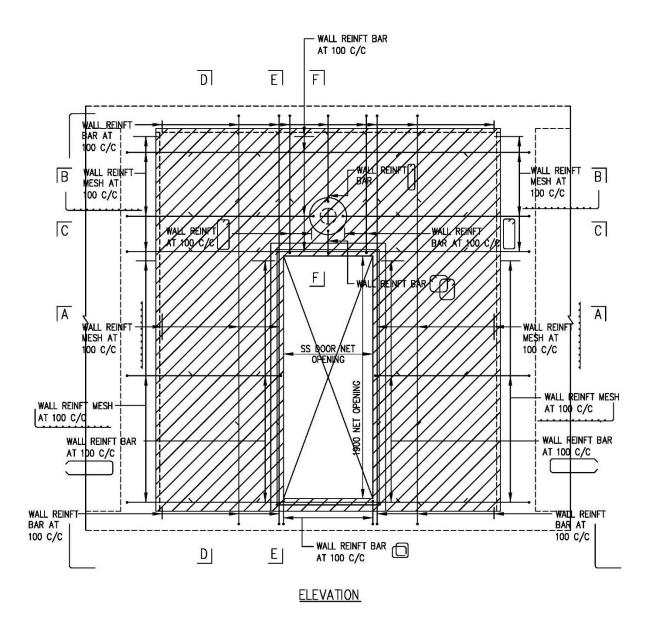


FIGURE 5b. PLAN OF PRECAST HS, SS or SSS DOOR FRAME (TYPE 3)

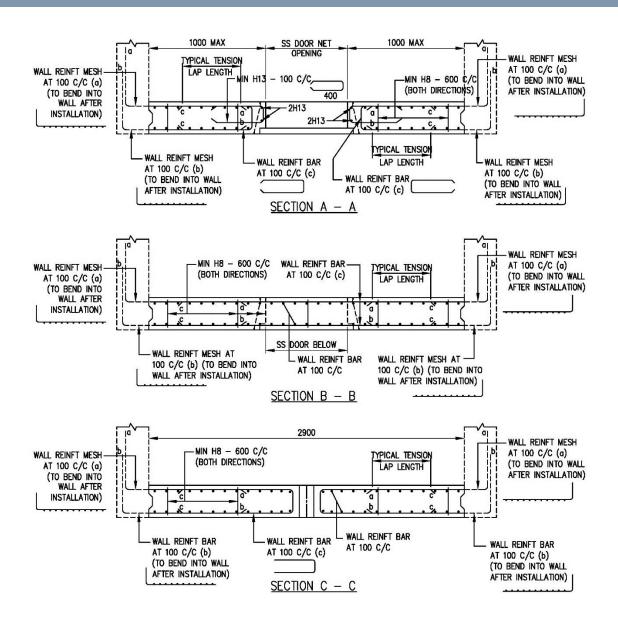
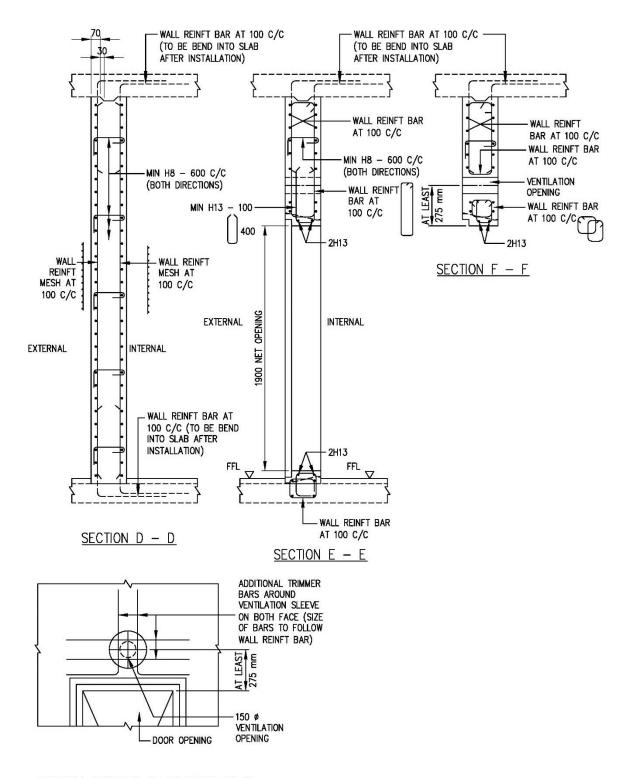



FIGURE 5c. PLAN OF PRECAST HS, SS or SSS DOOR FRAME (TYPE 3)

TYPICAL DETAILS OF TRIMMER BARS
FOR VENTILATION SLEEVE

FIGURE 5d. PLAN OF PRECAST HS, SS or SSS DOOR FRAME (TYPE 3)

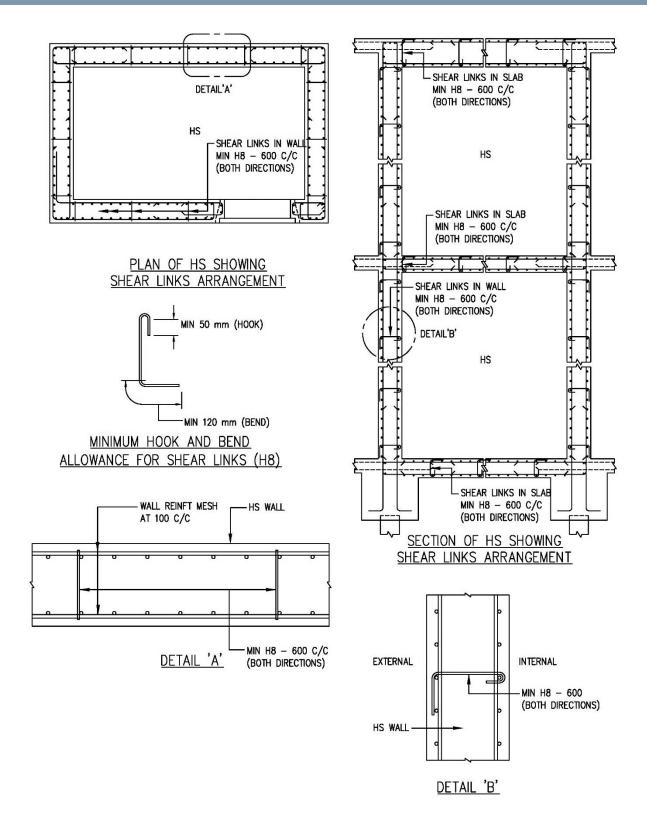


FIGURE 6. SHEAR LINKS DETAILS FOR for HS, SS and SSS WALL AND SLAB

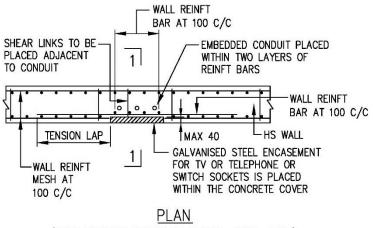
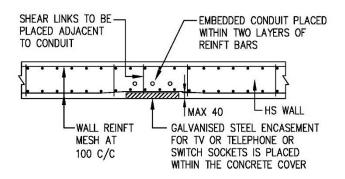




FIGURE 7. STEEL REINFORCEMENT BAR DETAIL FOR HS, SS SND SSS DOOR OPENING

(IF REINFORCEMENT BARS ARE CUT)

PLAN (REINFORCEMENT BARS ARE NOT CUT)

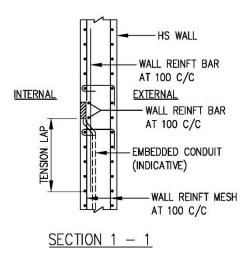
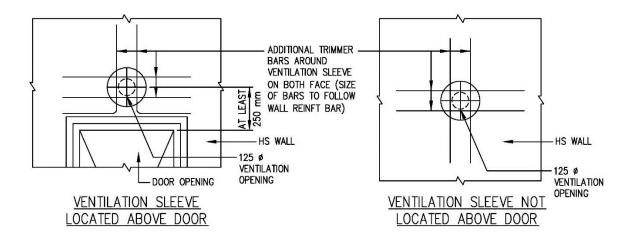
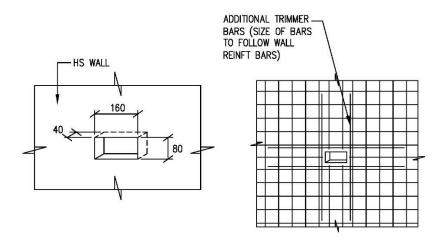




FIGURE 8. STEEL REINFORCEMENT BAR DETAILS FOR SWITCHED OUTLET, TC, RADIO AND POWER POINT

<u>ELEVATION OF WALL RECESS</u>
(IF WALL REINFORCEMENT BARS ARE CUT FOR WALL RECESS)

FIGURE 9. STEEL REINFORCEMENT BAR DETAILS AROUND VENTILATION SLEEVE AND WALL RECESSES

LIST OF TABLES

- Table 1 Borehole information
- Table 2 Sample Pile Schedule
- Table 3 Sample Beam Schedule
- Table 4 Sample Column Schedule
- Table 5 Steel reinforcement bar size and spacing for each curtailment marking
- Table 6- Curtailment Marking Schedule
- Table 7- Wall Schedule
- Table 8- Steel reinforcement bar size and spacing for each curtailment marking
- Table 9 Steel reinforcement bar size and spacing for each curtailment marking

LIST OF FIGURES

- Fig. 1a Sheet with Title Block
- Fig. 1b- BCA Standard Approval Stamp
- Fig. 1c BCA Standard Approval Stamp (CD Shelter)
- Fig. 2 Site layout showing reduced annotations at L1
- Fig. 3- ST plan submission in stages indicating a consolidated substructure and superstructure BIM files before TOP/CSC
- Fig. 4 Model progression for ST1 and ST2.
- Fig. 5 Model progression for amendment submissions for approved ST
- Fig. 6 Model progression for single and federated options
- Fig. 7 Model progression QP1 and QP2 including consolidated record models
- Fig. 8 For Approval and For Reference as solid and half tone elements per ST
- Fig. 9- Dummy Borehole Object
- Fig. 10 Isometric view showing borehole zones
- Fig. 11 Tendons for post tension element
- Fig. 12 Exploded view of CLT structure showing Primary Load Bearing PLB objects
- Fig. 14 BIM generated Floor Plans
- Fig. 15 Critical Elements highlighted in 3D and schedules
- Fig. 16 Critical Joints showing bolted connection of steel beams to column
- Fig. 17 Highlighted structural beam with embedded rebar as attributes/properties
- Fig. 19 QP three (3) options for structural detailing in native BIM
- Fig. 20 Section showing reinforcement spacing of a typical 1-storey public shelter
- Fig. 21 Section showing reinforcement spacing of a typical 2-storey public shelter
- Fig. 22 Layout of a typical public shelter showing reinforcement spacing

CODE OF PRACTICE FOR BIM E-SUBMISSION SERIES

This section is part of the Code for Practice for BIM e-Submission series:

Cod	Code of Practice for BIM e-Submission					
	A.	General Requirements				
	В.	Architectural Requirements				
	C.	Civil & Structural (C&S) Requirements				
	D.	Mechanical, Electrical & Plumbing (MEP) Requirements				

All documents related to BIM e-Submission can be downloaded from the CORENET website:

- o Code of Practice for BIM e-Submission
- o BIM e-Submission Templates
- o BIM e-Submission Template Guides

https://www.corenet.gov.sg/general/building-information-modeling-(bim)-e-submission.aspx

Building and Construction Authority 52 Jurong Gateway Road #11-01, Singapore 608550

www.bca.gov.sg

For more information and feedback on the Code of Practice for Building Information Modelling series, please visit the CORENET website:

www.corenet.gov.sq