

BIM Essential Guide

For MEP Consultants

BCA acknowledges the leadership provided by the BIM Steering Committee in support of the production of the BIM Essential Guides

The BIM Essential Guides have been drafted by the Centre for Construction IT on behalf of BCA and the BIM Steering Committee.

©Building and Construction Authority 2013

Building and Construction Authority 5 Maxwell Road #16-00 Tower Block MND Complex Singapore 059110 www.bca.gov.sg

First published August 2013

While every effort has been made to ensure the accuracy and quality of information contained in this publication, the Building and Construction Authority, its employees, agents or industry partners can take no responsibility for the subsequent use of this information, nor for any errors or omissions that it may contain.

Cover image and design courtesy of RSP Architects Planners & Engineers (Pte) Ltd, Squire Mech Pte Ltd and the BCA Academy of the Built Environment.

Contents

CEO's Message	iii
ACKNOWLEDGEMENTS	iv
OBJECTIVES	v
Suggested Deliverables	vi
Preparation & Conceptual Design	1
Understanding Client's Requirements	1
Project Set-up	2
Starting the Model	9
Schematic Design	10
Schematic Diagrams	10
Analysis	13
Preparing BIM Model for Energy Analysis	13
Sizing MEP Elements	19
Detailed Design	22
Modelling MEP Services	23
Model Referencing in Construction Documents	33
Publishing Model for Tendering/Submission	37
Collaboration between MEP Sub-Disciplines	40
Others	42
Value- Added Services	42
Regulatory Submissions	42
Model version control	42

Appendix A – Typical BIM Elements by Discipline	44
(I) Architectural BIM Elements	44
(II) Structural BIM Elements	45
(III) Civil BIM Elements	46
(IV) ACMV BIM Elements	47
(V) Plumbing and Sanitary BIM Elements	48
(VI) Fire Protection BIM Elements	49
(VII) Electrical BIM Elements	49
(VIII) Gas BIM Elements	50
Appendix B – Suggested Colour Coding for Modelling	51
ACMV	51
Electrical	52
Protection, Plumbing, Sanitary & Gas	53

CEO's Message

Dear readers,

Building Information Modelling (BIM) has gained much traction in recent years as digital construction technology that will fundamentally transform the building and construction industry practice in the delivery of an excellent built environment. It is a game changing technology that will improve the construction productivity as well as the level of integration and collaboration across the various disciplines in the construction value chain. It is therefore important for the industry to embrace the technology with clarity.

The BIM Essential Guides are part of the industry's efforts to demystify BIM and to give clarity on the requirement of BIM usage at different stages of a project.

Under the leadership of the BIM Steering Committee chaired by Er Lee Chuan Seng, Emeritus Chairman, Beca Carter, and comprising of leaders in BIM, the BIM Managers Forum has contributed much time and effort to compile the various best practices to make this Guide possible over a short span of time. We would like to thank them for their contribution.

We hope that every BIM user can truly reap the benefits of BIM by integrating it into his/her day-to-day workflow – from feasibility study to facility management. We hope that BIM users can use these guides as a platform to jumpstart their BIM adoption, before they leap to greater heights, innovating and transforming their workflow.

BIM is a journey. We envisage that it will grow with time and will inspire more advanced and innovative use of BIM. I would like to encourage all BIM practitioners to join in this industry effort to grow this Guide into a wealth of BIM knowledge.

Dr John Keung

ACKNOWLEDGEMENTS

BCA would like to acknowledgement the contributions of the following organizations which had provided their valuable inputs in the development of this guide:

Tun

United Project Consultants Pte Ltd	Mr. Felix Batad
	Mr. Bai Hao Yu
Parsons Brinckerhoff Pte Ltd	Ms. Boey Lai Yin
	Ms. Tay Shuang Yan
Squire Mech Pte Ltd	Mr .Joseph Koh
	Ms. Sum Yuit Mei
Surbana International Consultants Pte Ltd	Mr. Saw Thant Lwin T
Arup Singapore Pte Ltd	Ms. Kendra Chan
	Mr. Rupinder Wilkhu
Rankine & Hill (S) Pte Ltd	Mr. Jeffrey De Lemos
	Mr. Gary Young
ST Architects & Engineers Pte Ltd	Mr. Daren Lim
Meinhardt (Singapore) Pte Ltd	Er. Choong Pei Nung
AECOM Singapore Pte.Ltd.	Mr. Bryan Chin
	Mr. Nicholas Poh
Beca Carter Hollings & Ferner (S.E.Asia) Pte Ltd	Er. Joseph Toh
Mott Macdonald Singapore Pte Limited	Ms. Koh Siew Leng
Centre for Construction IT	Mr Liu Ziwen
	Mr Qin Hao

OBJECTIVES

The objective of this Guide is to assist MEP (Mechanical, Electrical and Plumbing) BIM users to develop BIM model(s) for new or and A&A project. It shows the possible use-cases of BIM at various design stages of the project.

This is a general document that covers a few typical buildings and is not an extensive document that covers all scenarios that might arise based on specific projects. Users are allowed to edit/change accordingly to suit their needs.

This document is not based on any specific software. This document does not cover the explanation and steps on how to use the software. For the steps and explanations of specific software, please refer to the software help or user manual.

Based on the project requirement, type and time line choose the BIM use and implement in the project.

Suggested Deliverables

0	-	0	-
~	ΙΔ	(-	ь.
-		-	-

SUGGESTED DELIVERABLES (MEP ONLY)

1.	Preparation & Conceptual Design	a. b. c.	Understanding Client's Requirements BIM Execution Plan MEP Concept Report which includes simple schematic, relevant design codes and etc.
2.	Schematic Design	a. b. c.	Preliminary Model based on Architectural massing models MEP Schematic Design Report which includes design criteria and prelim design calculation. Schematic Drawings
3.	Detailed Design	a. b. c. d.	Detailed Design Drawing + Model MEP Detailed Design Report which includes updated design criteria and design calculation Clash detection & resolution report between MEP model and Architect & Structure models Detailed cost estimate, BOQ, tender documents
4.	Construction		N/A
5.	As Built		N/A
6.	Facility Management		N/A

Note: Regulatory BIM e-submissions are excluded from the above list because the timing of submission may vary due to individual project requirements.

Preparation & Conceptual Design

UNDERSTANDING CLIENT'S REQUIREMENTS

- Identify project brief
- Identify sustainability aspirations

Both the client and project team should reach an understanding on the purpose of BIM to fulfil Client's Requirements.

Example questions to clarify the Client's Requirements.

- What are the overall goals in this BIM project?
- What are the specific goals that have to be achieved by BIM in this BIM project?
- What are the possible ways to achieve the specific BIM goals?
- Is the client aware and agreeable that the design team may use a different way to achieve the specific BIM goals?

The preliminary BIM MEP Model can be created from the Architectural BIM model and serves as a preparation for the Detailed Design stage. Before starting the actual modelling, it is recommended to go through proper planning and preparation.

PROJECT SET-UP

Factors to be considered before starting a BIM Project:

- Client's requirements as stated in the BIM execution plan
- Agreed software platform and version for the project

Typical Project Set-up Workflow

Load Template

Load MEP BIM Template before the start of a new project. The template should include company standards from the following 4 MEP sub-disciplines:

- Air-Conditioning and Mechanical Ventilation ACMV (Services)
- Plumbing and Sanitary Services
- Fire Protection Services
- Electrical Services

Project Information

Each project file should include the following project information:

- Project Status
- Client Name
- Project Address
- Project Name
- Project Number
- Project location
- Other optional project information: e.g. Design Engineer etc.

Building Services Additional Data:

- Building Services type (i.e. VAV Single Duct)
- Building Construction (Defines default Building Construction)
- Building Infiltration Class (Defines Building Construction leakage)
- Report Type (Defines type of Analysis report generated)
- Ground Plan (Project level associated to Site Ground level)
- Project Phase (Defines what phase of the project is being analyzed)
- Sliver Space Tolerance (Defines riser and shaft tolerances for the space)

ARCHITECTURAL MODEL VALIDATION

Check the coordinate of the Architectural model. Make sure both MEP and Architectural models has the same coordinate before linking. The basic elements required from the Architectural model are as follows:

- Raised Floor
- False Ceiling
- Grids
- Levels
- Plumbing Fixtures
- Slab
- Wall
- Services, Risers
- The elements should be placed realistically on the architectural plan for proper modelling of required MEP systems

Example for Revit MEP BIM Users

1) Load project template

An example of MEP template can be found at <u>http://bimsg.wordpress.com/singapore-guide/e-submission/</u>. It is designed for MEP BIM e-submission.

2) Link architectural model

Note: Using Origin to Origin Positioning option to place MEP model at the same position as the Architectural model

Preparing MEP Model

Make sure that the MEP and Architectural levels are aligned. This can be done through the following steps for Revit MEP users.

- a. Open one of the elevation views of the model by right-clicking and select **Go to Elevation View**
- b. Open the **Modify Tab** of the select **Align tool**. Pick the Architectural model level **(a)** first, then pick the MEP Level to align **(b)**. See below.

c. Lock the MEP level to the AR level by clicking the Lock Icon that appears in the view. This is to monitor any future changes to the floor height of the project

Sheets Set-up

Basic title blocks and sheets are already created as part of BCA MEP e-Submission Template. New sheets can be created through the following steps:

a. Go to View Tab and select Sheet

b. Choose the right Title Block to be used for the new sheet

Modelling Plan

A project model should be carefully divided into manageable sizes based on the project complexity or size. This can be done through **Worksharing** and **Linking Models** for Revit Users.

Worksharing

This is applicable for bigger projects that need to be done by more than one BIM modeller. The Worksharing function must be enabled.

Work Sharing Workflow

Members could name the file they are working on with the following naming convention.

WORKSET NAME ELEMENTS ASSIGNED TO WORKSET

ES	Electrical sub-discipline elements	SN	Sanitary sub-discipline elements
FP	Fire sub-discipline elements	PL	Plumbing sub-discipline elements
ACMV	Mechanical sub-discipline elements	PF	Plumbing Fixture sub-discipline
GAS	Gas sub-discipline elements		elements

Linking Models

This is the most common method for projects where the individual models of each subdiscipline in a project are created. This is more applicable for smaller projects where tasks can be done without too much coordination effort. Elements will be placed in the model and can be coordinated within the sub-discipline itself. Models will then be linked for coordination with other sub-disciplines within the central file.

Linking Model Workflow

STARTING THE MODEL

Once the project set-up has been done, file will copied for each sub-discipline.

Coordinating MEP Elements Using Link

Individual sub-discipline models will be linked one by one to a Central File. The linked models cannot be edited inside the Central File. They need to be edited in the original authoring tool. Relinking of the files using Mange Link is needed to reflect the latest update back in the Central File.

Specifying Pipe/Duct Settings

Create a new pipe/duct type. Configure conversion settings that will be used when creating a pipe to physically connect the elements. Types of pipes/ducts to be created will be based on the requirements of the project.

Pipe settings to be done are shown (but not limited to) below:

- a. Pipe Types (Materials, Fittings and other accessories, etc.)
- b. Pipe Sizes
- c. Systems

Pipe types Setting

Material:		Ductile Iro	on 🔻		
Roughness	:	0.25908 r	0.25908 mm		
Connection:		Flanged	Flanged 🔹		
Schedule /	Туре:	22	•		
New	New Size Delete Size		elete Size		
Nominal	ID	OD	Used in Size Lists		
80.000	84.328	100.584	V		
100.000	104.140	121.920	V		
150.000	155.956	175.260	V		
200.000	209.042	229.870	V		
250.000	259.588	281.940	V		
300.000	310.896	335.280	V		
350.000	362.712	388.620			

Schematic Design

SCHEMATIC DIAGRAMS

The Schematic Design Stage for Mechanical, Electrical and Plumbing covers the steps required for creating schematic diagrams. BIM modelling is not required.

Most BIM authoring tools do not have the capability to generate Schematic Diagrams automatically from the model at this moment. It is recommended to follow either one of the options below to generate Schematic Diagrams

- 1. Create Schematic Diagrams using traditional 2D methods in a CAD environment
- 2. Create Schematic Diagrams using BIM authoring tools

Sample Plumbing Services Schematic Diagram

TRADITIONAL 2D METHOD USING CAD TOOLS

Schematic diagram created in CAD tool can be loaded directly into BIM tools through the following steps

- 1. Create a new sheet from the View Tab of BIM Authoring Tools
- 2. Select the tile block based on the system from the list of the title blocks shown in the New Sheet dialog box.
- 3. The created new sheet for the schematic diagram will be placed under the non category views on the project browser. Right click on the created sheet and rename it based on the purpose of the model.

4. Insert the pre-created 2D CAD drawing through **Insert Tab** – Link CAD then choose the intended file as show in the image on below

BIM Essential Guide – For MEP Consultants

BIM METHOD

It is advisable to import the symbols and typical details that are already created in CAD. This is to save time in creating the schematic diagrams. Below are steps needed to create the schematics in BIM.

- Creating a new Drafting View from the View Tab.
 View > Drafting View
- Import 2D Symbols through
 Insert Tab > Import CAD (a and b from the figure on the left)
- Place the imported 2D Symbols into the drawing and connect it. Using the Detail Lines. Use Annotate Tab c and use Detail Line tool d to do.
- Select the lines e from the figure on left) that were created and change the line style properties to its representing system. f

Analysis

PREPARING BIM MODEL FOR ENERGY ANALYSIS

Visualization

Survey the model to determine the best method of installing MEP systems.

• Perform walkthrough

• Cut Sections (2D / 3D)

Setting Project and Zone Information

Set a data that is universal to the project, including building types, location, weather, building construction type, and window type data.

Parameter	Value	*	
Common	*		
Building Type	School or University		
Ground Plane	Level 1		
Location	Singapore, Singapore		
Detailed Model	*		
Building Service	VAV - Single Duct		
Building Infiltration Class	None	E	
Building Construction	<building></building>		
Project Phase	New Construction		
Sliver Space Tolerance	304.80		
Export Complexity	Simple with Shading Surfaces		
Export Default Values			
Report Type	Standard		
Energy Model	*		
Create Energy Model			
Core Offset	3657.60		
Divide Perimeter Zones	V		
Conceptual Constructions	Edit		
Target Percentage Glazing	40%		
Target Sill Height	762.00		
Glazing is Shaded			

Creating and Defining Rooms or Spaces

Assign spaces to the linked Architectural model and make sure that all spaces are properly assigned including unoccupied spaces such as plenums and shafts.

Form ACMV Zones to group spaces created earlier

Input spaces' detail information by using either property palette or space schedule and make sure all the spaces are correctly defined. All spaces need to be defined even unconditioned spaces like plenums and shafts

Parameter	Value		
Energy Analysis	*		
Area per Person	1.429 m²		
Sensible Heat Gain per person	80.59 W		
Latent Heat Gain per person	80.59 W		
Lighting Load Density	9.69 W/m²		
Power Load Density	5.81 W/m²		
Plenum Lighting Contribution	20.0000%		
Occupancy Schedule	Restaurant Occupancy - Lunc		
Lighting Schedule	Retail Lighting - 7 AM to 8 PM		
Power Schedule	Retail Lighting - 7 AM to 8 PM		

Constructions	
Roofs:	
4 in lightweight concrete (U=1.275 W/(m²-K))	-
Exterior Walls:	
8 in lightweight concrete block (U=0.8108 W/(m²-K))	-
Interior Walls:	
Frame partition with 3/4 in gypsum board (U=1.4733 W/(m²-K))	-
Ceilings:	
8 in lightweight concrete ceiling (U=1.361 W/(m²-K))	-
Floors:	
Passive floor, no insulation, tile or vinyl (U=2.9582 W/(m²-K))	-
Slabs:	
Un-insulated solid (U=0.7059 W/(m²-K))	-
Doors:	
Metal (U=3.7021 W/(m²-K))	-
Exterior Windows:	
Large double-glazed windows (reflective coating) - industry (U=2.9214 \	-
Internal Shading Factor: 0	
Interior Windows:	
Large single-glazed windows (U=3.6898 W/(m²·K), SHGC=0.86)	-
Skylights:	
Large double-glazed windows (reflective coating) - industry (U=3.1956 \-	-

Enter detail information for zones and spaces. Make sure that all spacing errors and warning are solved before proceeding to next step. Any error or warning left unsolved may affect the accuracy of the analysis.

Loads Calculation

Cooling load calculation results can be produced in three types: Simple, Standard and Detail. The report can be accessed in the Project Browser under reports

• Analyze the reports

Space Name	Area (m²)	Volume (m ³)	Peak Cooling Load (W)	Cooling Airflow (L/s)	Peak Heating Load (W)	Heating Airflow (L/s)
1 Cafeteria	146.961	431.42	19,882	828.7	-651	0.0
1 Office	22.209	57.74	1,748	95.5	-77	0.0
2 Office	41.502	107.90	4,669	266.7	-139	0.0
4 Office	15.359	39.93	1,851	104.7	-73	0.0
5 Office	9.7	34.29	583	32.9	-18	0.0
6 Space	8.463	22.00	591	34.2	-21	0.0
7 HALL	327.189	1,174.32	72,957	4,178.2	-870	0.0
8 LECTURE ROOM 1	48.559	126.25	8,018	463.9	-191	0.0
9 Space	31.567	82.08	4,072	234.4	-127	0.0
10 Space	126.698	329.42	17,186	1,011.2	-631	0.0
11 Space	38.487	118.49	3,249	191.0	-113	0.0
12 Space	13.688	35.59	1,014	59.7	-43	0.0
13 Space	13.122	34.12	965	56.8	-41	0.0
14 Space	89.465	232.61	10,920	642.6	-357	0.0
15 Space	47.99	124.77	5,886	346.3	-191	0.0
16 Space	97.118	252.51	11,821	695.6	-382	0.0
17 Space	47.99	124.77	5,885	346.3	-191	0.0
18 Space	47.169	122.64	4.308	253.5	-219	0.0

In order to further perform energy analysis by using other energy analysis software, export gbXML file from BIM modelling authoring tools.

SIZING MEP ELEMENTS

Creating Diffusers and Mechanical Equipment

Choose the right diffusers and equipment based on the design requirements

Place the diffusers and equipment in the model.

Duct Layout

Complete the ACMV systems with ducts.

• Select the system to be sized.

- Set the friction loss rate.
- Set the duct height restriction if necessary for some factors e.g. ceiling space limitation.

Duct Sizing	X
Sizing Method	
Friction -	1.00 Pa/m
💿 Only 💿 And	🔘 Or
Velocity:	5.1 m/s
Constraints Branch Sizing:	
Calculated Size Only	•
🔽 Restrict Height:	300 🗸
Restrict Width:	2400 👻
ОК С	Cancel Help

Run Duct Sizing

• Generate and analyze the duct pressure loss report.

Section	Element ID	Flow	Size	Velocity	Velocity Pressure	Length	Pressure Loss	Total Pressure Loss
	563683	211.9 CFM	190.0	3.5 m/s	7.5 Pa	1459.64	1.3 Pa	1.3 Pa
	563677	211.9 CFM	175x175	3.3 m/s	6.4 Pa	750.29	0.7 Pa	0.7 Pa
	563674	423.8 CFM	225x225	4.0 m/s	9.4 Pa	4514.64	4.1 Pa	4.1 Pa
	563675	847.6 CFM	275×300	4.8 m/s	14.1 Pa	4454.29	4.3 Pa	4.3 Pa
	563671	1271.3 CFM	375x300	5.3 m/s	17.1 Pa	4305.11	4.1 Pa	650-
	563672	1271.3 CFM	375x300	5.3 m/s	17.1 Pa	2401.99	2.3 Pa	0.5 Fd
2	563693	211.9 CFM	190.0	3.5 m/s	7.5 Pa	1459.64	1.3 Pa	1.3 Pa
3	563687	211.9 CFM	175×175	3.3 m/s	6.4 Pa	750.29	0.7 Pa	0.7 Pa
5	563703	211.9 CFM	190.0	3.5 m/s	7.5 Pa	1459.64	1.3 Pa	1.3 Pa
7	563697	211.9 CFM	175x175	3.3 m/s	6.4 Pa	634.76	0.6 Pa	0.6 Pa
)	563713	211.9 CFM	190.0	3.5 m/s	7.5 Pa	1459.64	1.3 Pa	1.3 Pa
L	563707	211.9 CFM	175x175	3.3 m/s	6.4 Pa	584.76	0.5 Pa	0.5 Pa
1	563723	211.9 CFM	190.0	3.5 m/s	7.5 Pa	1459.64	1.3 Pa	1.3 Pa
5	563717	211.9 CFM	175×175	3.3 m/s	6.4 Pa	546.26	0.5 Pa	0.5 Pa
3	563733	211.9 CFM	190.0	3.5 m/s	7.5 Pa	1459.64	1.3 Pa	1.3 Pa
3	563727	211.9 CFM	175×175	3.3 m/s	6.4 Pa	496.26	0.4 Pa	0.4 Pa

• Do some changes to the model if necessary.

Detailed Design

In the Detailed Design stage, the preliminary design model will be further developed with more accurate BIM elements. Additional BIM elements need to be added to complete the model. Refer to Appendix A for a list of typical BIM elements with attributes that need to be modelled. Elements should come with an accurate dimensions, shape and location. Necessary attributes should be provided.

Deliverables:

- 1. Tender model with drawings Content:
 - Site Plans
 - Floor Plans
 - Schematic Diagrams
 - Typical detail Plans
 - BIM model
- Submission BIM model for Regulatory Approval Please refer to BIM MEP e-submission guides for specific requirements from the Agencies

The sub-chapter will be divided into different services namely:

- Mechanical Services
- Electrical Services
- Plumbing & Sanitary Services and
- Fire Protection Services

BIM Essential Guide – For MEP Consultants

MODELLING MEP SERVICES

In this section, it is assume that the file has already been prepared and the modelling plan to be used by the team has already been decided.

Copy Monitoring Elements of the Architecture Model

Copy Monitor is a tool to ensure the changes in the model between different disciplines are properly communicated.

Note: Coordinates are to be acquired from the Architectural model first before doing copy and monitor.

ELEMENTS	REVIT MEP
Grids	Yes
Levels	Yes
Columns	Yes *
Floors incl. openings	Yes *
Walls incl. openings	Yes *
Air Terminals	Yes **
Lighting Fixtures	Yes **
Plumbing Fixtures	Yes **

Revit elements which can be copied / monitored

- * Unless there is a specific project deliverable, this function should not need to be used in Revit MEP
- ** If the element is created in the Architectural Model

Copy monitoring can be done through the following steps:

- a. On the plan view of the model, go to the **Collaborate** Tab and select **Copy/Monitor tool**
- b. From the pull down menu, choose Select Link
- c. Hover the cursor to the architecture link model and pick it. Copy monitor tab will be activated.

- d. Select **Copy** from the ribbon then select the elements intended to copy and monitor on the project **(a)**.
- e. Click Finish (c) once done Additional MEP elements will be created on the same position of the copied architectural model.

Note: If there is a change in the updated Architectural Model affecting the elements that have been copied and monitored, a warning will appear on the screen once the updated Architectural Model is being reloaded.

After the project has been set up, the mechanical services can be modelled in the manner illustrated in the following pages.

Modelling Electrical Services

Modelling Plumbing and Sanitary Services

Placing Fire Protection Equipments All fire protection equipment shall be placed on the architecture model in realistic position. Local regulations must be considered such as distances, elevations, locations, etc

Modelling connections

Pipe shall be place and routed according to the design with correct sizes and levels. Complete with fittings and accessories.

MODEL REFERENCING IN CONSTRUCTION DOCUMENTS

This is the last step of the design development stage where the model will be prepared for regulatory submission or tendering.

Objectives:

To extend the information of the model by putting additional properties such as 2D details and attributes.

Deliverables:

- Model for Tendering
- Model for BIM e-Submission

Preparing BIM model for Tendering and e-Submission

The floor plans, sections and other drawings required for tendering can be generated directly from the BIM model. Reference should be made to the MEP BIM e-submission Guidelines in preparing drawings for regulatory approvals

The steps on the following pages can be applied to MEP trades of the project.

Preparing Floor Plans

Open typical floors of the created model. Zoom- in to one of the typical units and do the following steps.

- a. From view tab, select **Callout. Right click** to the selected Callout and Open the View
- b. From the Annotate tab, click Tag by Category and select the elements in the model

Standard annotation/tags available in the template can be used to annotate the model.

c. Complete the annotation in the model using Text tool and other detailing tool if necessary. See figures Below

Placing Drawing into Sheets

Once the drawing views (plans, schematics etc) are clearly annotated, they can be organized and placed in sheets with the steps below:

- a. Create a sheet for the intended tender drawing. Company standards title block loaded into the template. Select the appropriate one.
- b. From the project browser, drag and drop the drawing to be placed.
- c. Once done, the drawing will be the same as the figure on the next page.

Repeat the same procedures to produce the documents listed below:

- Key Plans and Layout
- Site Plans
- Floor Plans
- Models

Publishing Model and Drawings to Non-editable File Format

Refer to BIM MEP e-Submission guideline to export/publish to DWF for regulatory submission

Note: The drawings produced from the BIM model during the Detailed Design stage can form part of the tender documents together with other 2D detail drawings

HYBRID METHOD: 2D connection details and 3D representation with generic objects.

Model as a reference for the certain views in floor plan. E.g. Multiple elements stacked at the same place.

PUBLISHING MODEL FOR TENDERING/SUBMISSION

- 1. Link Reference models and MEP model to Production Template.
- 2. Production Template consists of matchline, dependant views, and scope boxes.

a. Create matchline

b. Create dependant views

- ----- Floor Plan: ACMV_1st Storey-Part 1
- Floor Plan: ACMV_1st Storey-Part 2
- Floor Plan: ACMV_1st Storey-Part 3
- Floor Plan: ACMV_1st Storey-Part 4
- ----- Floor Plan: ACMV_1st Storey-Part 5
- Floor Plan: ACMV_1st Storey-Part t

3. Link views to sheets.

4. Publish sheets.

Collaboration between MEP Sub-Disciplines

Collaboration Elements within Building

- Level by Level (Storey by Storey)
- Room by room (Below Raised Floor)
- Horizontal Space (Plenum)
- Vertical Space (Core Shafts)

<u>Collaboration Elements at outside of Building - Roof Top, external face of</u> <u>building, external works etc</u>

- Mechanical System ACMV Equipment and distribution such like Cooling tower, AHU, Ducting, etc
- Plumbing and Sanitary System Pumps, water holding tanks, pool filtration equipment, Sump, sewage pit, grease and sand traps, etc
- Fire Protection System Fire sprinkler pumps, sprinkler tanks fire shutter, smoke curtains, piping system, etc
- Electrical System Transformer, Lifts, Switch boards, panel, cable trays, trucking containment, etc

Example:

Plenum levels may need to be inserted to appropriately define the Mechanical Zones. Light fixtures and air terminals may also be referenced to a ceiling plenum level.

- Elements between Diffusers and Ceiling Lighting fixtures
- Elements between Ducting runs and piping system or Cable trays or Light fixtures and Sprinkler head
- Elements between Fire dampers and piping system

Others

VALUE- ADDED SERVICES

For detailed information, refer to Singapore BIM Guide

REGULATORY SUBMISSIONS

For detailed information, refer to MEP BIM e-Submission Guideline

MODEL VERSION CONTROL

As the project progresses, consequently is the model change. Model will change according to specific requirements needed in every stage. Few factors of having numerous model versions are as follows:

- Design Change
- Authority Submission and Re-submission
- Model Update
- Remote Office Locations

Different model versions are certain. Managing these versions is the possible option that we may implement to avoid having it. Few recommendations listed below will help all project members to avoid confusion.

Organized Folder Structure

- To implemented office-wide.
- Saving the specific file on their corresponding location will be helpful for all, and will also reduce the time spent in searching.
- To avoid duplicating files on their own PC to avoid confusion when working.
- "Backup", "Superseded" or similar folder name where all backups/ outdated files are located.
- "Archive", "Published" or similar folder name where all copies of issued files are located.

• "Working", "WIP" or similar folder name where only "one working model" (varies on project setup) is located.

Keeping "One Working Model"

- Project Server to serve as a central location of model, where every team member can access and work.
- "Graphisoft BIM Server", "Revit Server" or similar will allow two or more teams located in remote office locations to update their changes to one central file simultaneously.

NOTE: RECOMMENDATIONS ARE NOT APPLICABLE TO ALL. THESE VARY DEPENDING ON PROJECT AND OFFICE REQUIREMENTS.

Appendix A – Typical BIM Elements by Discipline

Kindly tick and write down the attributes of the selected elements on the table.

(I) ARCHITECTURAL BIM ELEMENTS

	Element	Elements or Parameters needed by each non-Architectural discipline
	Site infrastructure within site boundary	
	(roads, pavements, car park spaces, access and parking arrangements and surrounding land use)	
	Street fire hydrant (only indication of locations necessary)	
Site Model	Surface drainage (only indication of locations necessary)	
	External drainage & underground drainage	
	Hard landscaped areas within site boundary	
	Planter boxes including sub-soil drainage systems	
	Massing of adjacent buildings relevant to project	
Rooms / Spaces	Room spaces, corridors, other spaces, plant and equipment rooms (including designated use)	
Walls and	Interior / Exterior walls / Non-structural walls / Blockwork walls (<i>Including finishes to identify if tiled</i> / painted / plastered)	
Curtain Walls	Curtain wall with mullions and transoms with true profile and window glazing units including shading devices	
Doors,	Interior / Exterior doors	
Windows and	Interior / Exterior windows	
Louvers	Louvers	
Basic	Beams (based on location and size indicated by the Structural Engineer)	
structure	Columns (based on location and size indicated by the Structural Engineer)	
Roofs	Roofs with overall thickness (including finishes & insulation)	
Ceilings	Ceilings (without support sub-frames) including module arrangement, material choices and finishes.	
	Hangars and sub-frames for ceilings★	
Floors	Horizontal floors	

	Sloped floors and ramps	
	Floor finishes details including tiling, carpet, screed only	
	Steps & stairs including risers, threads and railings including headroom clearance requirements	
Vertical Circulation	Elevator shafts (without fit-out installations by lift contractor)	
	Access ladders and catwalks	
A web its studed	Precast / Prefab / GRC / Fibreglass facades	
Specialties	Railing & parapets, including mesh & metalwork	
and Casework	Fixed Building Maintenance Units in their overall bulk form	
Schedules	Schedules allowing information to be extracted from elements	
Fixtures and Equipment ★ (with input	Loose furniture including desks and computer workstations, casework (carpentry), including upper and lower cabinets	
from interior	Appliances such as in kitchen equipment	
designers, specialist sub- contractors, etc)	Toilet fixtures, plumbing faucets	

* these elements may cause BIM models to become too big and unmanageable.

(II) STRUCTURAL BIM ELEMENTS

Element	Elements or Parameters needed by each non-Structural discipline
Foundations including piles, pile caps, tie / ground beams & footings	
Diaphragm walls & retaining walls	
Beams	
Columns	
Walls	
Slabs, including slab on grade and floating slab, recesses, curbs, pads and major penetrations	
Other types of transfer structure not mentioned above	
Stairs (steps, risers, threads, landings): all framing members and openings	

Shafts and Pits (and openings)	
Precast & Prestressed concrete systems: all primary and secondary	
elements	
Temporary structures and platforms	
Concrete reinforcement details (Rebar), imbeds and cast-ins $m{\star}$	
Steel frame structures including bracing systems *	
Base plates, bolts, clip angles, fixings, etc. *	
Connection details of structural steel members *	

 $m{\star}$ these elements may cause BIM models to become too big and unmanageable.

(III) CIVIL BIM ELEMENTS

	Element	Elements or Parameters needed by each non-Civil discipline
Digital Terrain Model (DTM) ↔	3D surface based on topography that shows site conditions and building locations Include existing walkways, roads, curbs, ramps and parking lots etc	
Geology Report △	Soil investigation report (A BIM Model is not required)	
Utilities Model	All points of connection for existing and new utilities within site boundary	
Rainwater & storm water pipe work	Includes outlets, surface channels, slot channels and manholes	
Underground Public Utilities	For drainage only	
Others	Drains, canals, crossings, retaining walls, and underground harvesting tanks	
	Underground electrical supply cables and sewer lines, IDA (telecom) line and Gas Lines.	

* Data of Digital Elevation Model to be provided by registered surveyors

riangle Data of Geology Report to be provided by geotechnical engineers

	Element	Elements or Parameters needed by each non-ACMV discipline
ACMV Equipment	Air Handling unit	
	Chiller unit	
	Variable refrigerant unit	
	Cooling Tower	
	Split-type indoor & outdoor air conditioning units	
	Exhaust or extract air fans	
	Fresh air fans	
	Other fans such as jet fans	
	Heat Exchanges for projects with District Cooling	
ACMV Distribution	Exhaust air ducts (excluding hangars)	
	Fresh air ducts (excluding hangars)	
	Supply air ducts (excluding hangars)	
	Return air ducts (excluding hangars)	
	Transfer air ducts (excluding hangars)	
	Diffusers, air-boots, air grilles, air filters, registers	
	Fire dampers, motorized dampers, volume control dampers, CO_2 sensors, CO sensors	
Mechanical Piping	Chilled water supply pipes including connections, fittings & valves	
	Chilled water return pipes including connections, fittings & valves	
	Condensate drain pipes including connections, fittings & valves	
Others	Switch boards, control, BMS & DDC panels, BMS control & monitoring modules	
	Fan Coil unit	
	Engineering Smoke Extract System (e.g. smoke curtains, ductless fans)	

(IV) ACMV BIM ELEMENTS

(V) PLUMBING AND SANITARY BIM ELEMENTS

Element	Elements or Parameters needed by each non-Plumbing and Sanitary discipline
Pipe supports and brackets *	
Pumps	
Control panels, monitoring and control sensors	
Plumbing BIM Elements only Fresh water piping, fittings, valves including hot & cold water pipe work with all plumbing equipment, sinks	
Water meters	
Storage, water holding tanks	
Pressure Vessels	
Underground Public Utilities for water supply	
Underground Public Utilities for drainage	
Grey water systems	
Pool filtration equipment	
Sanitary BIM Elements only	
Foul drainage, kitchen waste pipe work including floor drains, open trapped gullies, sealed trapped gullies and clean outs, vents and manholes	
Grease and sand traps	
Sump and sewage pits	

 $m{\star}$ these elements may cause BIM models to become too big and unmanageable.

(VI) FIRE PROTECTION BIM ELEMENTS

Element	Elements or Parameters needed by each non-Fire Protection discipline
System piping, droppers, fittings, valves and sprinkler heads, sprinkler inlets, sprinkler control valve set, subsidiary valves, flow switches	
Pipe supports and brackets $lpha$	
Fire alarm gongs & break glass unit	
Fire sprinkler pumps	
Sprinkler tanks	
Hydrants and hose reels (location of street fire hydrant determined by architects)	
Gas piping for suppression systems	
Heat or smoke detectors, control panels, monitoring and control sensors, pump panels, check meter positions	
Fire extinguishers	
Fire shutters & hoods above	
Smoke Curtains	

* these elements may cause BIM models to become too big and unmanageable.

(VII) ELECTRICAL BIM ELEMENTS

Element	Elements or Parameters needed by each non-Electrical discipline
Cable trays, trunking & cable containment, electrical risers, conduit, bus duct, power feeds	
Outlets, panels, wall switches, circuiting to devices, security devices, card access and "plug moulds" (socket points)	
HV & LV switch boards, switchgear, MCCB boards, MCB boards	
Transformers	
Light fittings & fixtures & housings for light fixtures	

BIM Essential Guide – For MEP Consultants

Conduit associated with access, data communication, security systems and electrical equipment
Telecom equipment and computer racks
Generators and exhaust flues including acoustic treatments
Diesel tanks & fuel pipes
Security system including CCTV camera, smart card system, door monitoring system
Car park control system, barrier gates
Equipment and associated installations maintained by public utility companies (including manholes / drawpits for the Power Grid)
Earthing and lightning protection system
Lifts, PA systems, BMS equipments including display panels (e.g. power consumption display)

* these elements may cause BIM models to become too big and unmanageable.

(VIII) GAS BIM ELEMENTS

Element	Elements or Parameters needed by each non-Gas discipline		
Gas piping and supply			

Appendix B – Suggested Colour Coding for Modelling

ACMV

SYSTEM TYPE	COLOR	RED	GREEN	BLUE
Supply Air	150	0	127	255
Return Air	92	0	189	0
Fresh Air	200	191	0	255
Exhaust Air	34	129	64	0
Primary Air	130	0	255	255
Kitchen Supply Air	210	255	0	255
Stair Pressurization Air	200	191	0	255
Lobby Pressurization Air	200	191	0	255
Toilet Exhaust Air	34	129	64	0
Kitchen Exhaust Air	40	255	191	0
Smoke Engineering Air	34	129	64	0
Chilled Water Supply Pipe	55	129	129	86
Chilled Water Return Pipe	55	129	129	86
Refrigerant Pipe	55	129	129	86
Condensate Drain Pipe	55	129	129	86
Mechanical Equipment	32	189	94	0
Motor Control Panel	32	189	94	0
Supply Air Grille	151	170	212	255
Return Air Grille	93	126	189	126
Fresh Air Grille	201	234	170	255
Exhaust Air Grille	35	129	107	89
Primary Air Grille	131	170	255	255
Kitchen Supply Air Grille	211	255	170	255
Toilet Exhaust Air Grille	35	129	107	89
Kitchen Exhaust Air Grille	41	255	234	170
Fire Damper	244	129	0	31
Motorized fire Damper	7	255	255	255
Damper	7	255	255	255
Access Panel	7	255	255	255
ACMV Text	52	189	189	0
Equipment Text	32	189	94	0

ELECTRICAL

SYSTEM TYPE	COLOR	RED	GREEN	BLUE
Normal Power Cable Tray/Trunking/Ladder				
(Hatch)	131	170	255	255
Emergency Power/GSM/Security Cable				
Tray/Trunking/Ladder (Hatch)	80	63	255	0
Telecommunication System (Tel/Data Scv)	131	170	255	255
Power System	80	63	255	0
Public System	80	63	255	0
Lighting Fixture	241	255	170	199
Lighting Fixture	71	212	255	170
Lighting Circuit (Dashed Line Type)	51	255	255	170
Lighting Circuit (Divide Line Type)	61	234	255	170
Lighting Fixture	131	170	255	255
Lighting Fixture	71	212	255	170
Electrical Equipment	2	255	255	0
Electrical Panel	80	63	255	0
Electrical Power Bus-Bar Trunking	2	255	255	0
Electrical Equipment (Centre Line Type)	2	255	255	0
Cable TV Lead-In Pipes/ Underground Cables	230	255	0	127
Security System/ Electrical Opening	141	170	234	255
Telephone Lead-In Pipes	230	255	0	127
TV Antenna System, Cable TV System (TV Pt.,				
Data Pt., Tele Pt. Etc)	131	170	255	255
Revision Cloud	50	255	255	0
Electrical Lead-In Pipe/ Underground Cables (Hidden Line Type)	2	255	255	0

PROTECTION, PLUMBING, SANITARY & GAS

SYSTEM TYPE	COLOR	RED	GREEN	BLUE
Fire Protection Pipe	241	255	170	191
Fire Protection Concealed Pipe	134	0	129	129
Fire Protection Exposed Pipe	231	255	170	212
Sanitary SWP	240	255	0	63
Sanitary WP	240	255	0	63
Vent	94	0	129	0
Domestic Cold Water Booster Pipe	214	129	0	129
Domestic Cold Water Gravity Pipe	240	255	0	63
Domestic Cold Water Transfer Pipe	230	255	0	127
Domestic Hot Water Booster Pipe	214	129	0	129
Domestic Hot Water Gravity Pipe	240	255	0	63
Domestic Hot Water Return Pipe	30	255	127	0
NEWater Water Booster Pipe	214	129	0	129
NEWater Water Gravity Pipe	240	255	0	63
NEWater Water Transfer Pipe	230	255	0	127
Plumbing Annotation	51	255	255	170

This guide is part of the BIM Essential Guide Series

RIM Eccontial Guida	FOR EACH	FOR EACH ORGANIZATION	
Bilvi Essential Guide	WITHIN EACH DISCIPLINE	ACROSS MULTIPLE DISCIPLINES	ALL DISCIPLINES
For Architectural Consultants	•		
For C&S Consultants	•		
For MEP Consultants	•		
For Contractor	•		
For BIM Execution Plan		•	
For BIM Adoption in an Organization			•

For more information and feedback on the BIM Essential Guide Series, please visit the following blog: <u>bimsg.wordpress.com</u>

Building and Construction Authority 5 Maxwell Road #16-00 Tower Block MND Complex Singapore 059110 www.bca.gov.sg